I.U.G.S. SUBCOMMISSION ON CARBONIFEROUS STRATIGRAPHY

Dr. Eva Paproth, Chairman
Dr. B. A. Engel, Secretary & Vice-Chairman
Dr. Hisayoshi Igo, Associate Secretary

Newsletter on Carboniferous Stratigraphy

Number 7 (October, 1989)

The Newsletter on Carboniferous Stratigraphy is distributed free of charge to both Titular and Corresponding Members of S.C.C.S. Other persons or institutions may subscribe to the Newsletter at an issue fee of US$8 (incl.postage) to be paid to the Secretary. If this modest price creates difficulties, please contact the Secretary to arrange an exchange agreement.

Financial support from I.U.G.S., distributed through I.C.S., is gratefully acknowledged. Due to the high costs of printing and distributing this Newsletter, this assistance is insufficient to cover the operating expenses of the Subcommission. Small donations from members, sent to the Secretary, would help to keep the S.C.C.S. financial and will be acknowledged in subsequent Newsletters, subject to the donor's agreement.

Dr. B.A. Engel, SCCS Secretary
Department of Geology,
University of Newcastle, NSW 2308 Australia
Table of Contents

1.0 Messages from the Chair 1

2.0 Annual Report of the Subcommission on Carboniferous Stratigraphy, 1988 ... 2
 2.1 Subcommission Objectives 2
 2.2 Membership and Officers 2
 2.3 National, Regional, Global Support 2
 2.4 Interface with Other International Projects 3
 2.5 Accomplishments of 1987-88 3
 2.6 Publications 1987-88 3
 2.7 Work Plan For 1989 4
 2.8 Donations by S.C.C.S. Members 4
 2.9 Progress Report on Volume III of "The Carboniferous of the World" ... 4

3.0 Subcommission Financial Report
 Statement of Income and Expenditure 1987-88 5
 Budget estimates and Grant for 1989 5

4.0 S.C.C.S. Ballot Results
 4.1 Titular Ballot 1: Subdivision of the Carboniferous System 6
 4.2 Titular Ballot 2: West European Regional Stratigraphic Classification 7

5.0 An Outline History of the I.U.G.S. Subcommission on Carboniferous Stratigraphy: Achievements & Objectives (Wagner) 9

6.0 S.C.C.S. Field and General Meeting, Utah-Nevada, September 1989
 General Meeting, Provo, Utah, September 25-26, 1989 13
 Field Meeting, Utah and Nevada, September 27-30, 1989 13

7.0 XII International Carboniferous Congress - Buenos Aires, 1991
 Congress Program ... 17
 Excursions .. 17
 Response to the First Circular 17
 List of Provisional Registrants (to August 6, 1989) 17
 International Commission of Coal Petrology; 43rd Annual Meeting 8
 Meeting of the I.C.C. Permanent Committee 12

8.0 Working Group Reports
 8.1 Working Group on the Devonian-Carboniferous Boundary (Papworth) 18
 8.2 Working Group on the Mid-Carboniferous Boundary (Lane & Higgins) 19
 8.3 Working Group on the Middle Pennsylvanian of North America (Sutherland) 20
 8.4 Working Group on the Upper Pennsylvanian (Kosanke) 21
 8.5 Working Group on Carboniferous Studies in China (Yang Shupu) 21
 8.6 Carboniferous Geology and Paleontology of Brazil (Rocha-Campos) 21

9.0 I.G.C.P. Project Reports
 9.1 Project 211: Late Palaeozoic of South America - Activities, 1983-1988 (Amos) 23
 9.2 Project 211: Late Palaeozoic of South America - 5th Meeting in Chile (Archangelsky) 26
 9.3 Project 211: Late Palaeozoic of South America - 6th Meeting in Brazil (Archangelsky) 26
 9.4 Project 272: Late Palaeozoic and Early Mesozoic Circum-Pacific events (Dickins) 27
 National Committee of Geology in Colombia (Valdier) 12

10.0 Contributions by S.C.C.S. Members 28
 10.1 Australian Studies 28
 10.1.1 Possible younger Carboniferous rocks and faunas in eastern Australia (Waterhouse) 28
 10.1.2 Zircon dating of the Late Palaeozoic of Australia (Roberts) 28
 10.2 Canadian Studies 29
 10.2.1 Carboniferous flora studies (Zodrow) 29
 10.2.2 Canadian palynological studies (Utting) 30
 10.2.3 Carboniferous-Permian basin analysis in the Canadian Arctic (Beauchamp) 30
 10.2.4 Larger foraminifera from the Canadian Arctic (Mamet) 30
 10.2.5 Small foraminifera of the Carboniferous and Lower Permian, Sverdrup Basin (Pinard) 30
 10.2.6 Foraminiferal studies (Danner) 31

11.0 Service Announcements 32
 Coal-bearing formations of Czechoslovakia (book for sale) 31
 11.1 European maps for sale 32
 11.2 Upper Palaeozoic Palaeobotanical Meeting Notice 32

APPENDIX: S.C.C.S. Membership mailing list 1-1 to 1-6
NEWSLETTER ON CARBONIFEROUS STRATIGRAPHY

Official publication of the I.U.G.S. Subcommission on Carboniferous Stratigraphy

VOLUME 7 OCTOBER 1989

1.0 MESSAGES FROM THE CHAIR

Retiring Chairman - Dr. W.H.C. Ramsbottom

The years since 1981, when I first became Chairman have been active ones for the Subcommission. Because of the cooperation of many colleagues we have made a little progress, but there is need to maintain this momentum if we are to achieve our aims (see this Newsletter, p.2) within a reasonable time.

My last duty as Chairman was to attend the meeting of the Commission on Stratigraphy held in Washington, D.C., during the International Geological Congress in July 1989 (the membership of the Commission comprises the Chairman of each of the Subcommissions, but the meetings are open to others). I gave a brief account of the Carboniferous Subcommission and its activities since 1981. A few interesting points emerged in the discussion afterwards. There seemed to be no worries about our proposal to categorize the two halves of the Carboniferous as Subsystems. With regard to the names we give to the new "upper" and "lower" Carboniferous divisions, the view was expressed that we should call them simply Upper and Lower Carboniferous rather than using such geographical terms as Pennsylvanian and Mississippian, and this opinion received some support. The matter is only one of those passed to our new Chairman. I would like to congratulate her on her election, and to hope that she enjoys the same enthusiastic support that I have had.

W. H. C. Ramsbottom

Incoming Chairman - Dr. Eva Paproth

First of all - my sincere thanks to the Subcommission members for entrusting me with the office of Chairman. I shall try my best to follow the example set by my eminent predecessors in serving the Subcommission's aims.

The ultimate object of all stratigraphic research is correlation. Only with experience can a distinction be made between "good" and "bad" correlation features and characters, and it is not unusual that ones which are "good" at first sight turn out to be the really "bad" ones in the long run and vice-versa. Thus correlation must govern all our scientific endeavours.

Most importantly, stratigraphy is a discipline designed to serve the needs of all sectors of our profession. It therefore must be both precise and unambiguous.

Carboniferous rocks are distinguished from those of many other systems by their richness in minerals, in particular both coal and hydrocarbon resources. For local and regional exploration and exploitation purposes biostratigraphic, seismic stratigraphic, lithostratigraphic, chronostratigraphic and other subdivisions have been devised. It is not the office of the Subcommission to interfere with these excellent local and regional subdivisions which are marked by particular facies influences, but it is the already demonstrated role of the Subcommission to draw upon this local knowledge and experience and apply it to the global chronostratigraphic framework in which the local and regional stratigraphic subdivisions may find their place.

Since its foundation in Heerlen in 1958, this Subcommission has tried to improve both stratigraphic correlation and subdivision and to establish a global chronostratigraphic framework. Over a long period of positive and negative experiences we should have learnt to be prudent. All of us, I am sure, are determined to come to a practical global scheme in the near future; work is now in progress, as has been demonstrated at the recent Provo/Las Vegas Field and General Meeting. It may be a good omen that, at last, the base of the Carboniferous System has now been formally defined.

Eva Paproth

Editor's note: This issue was held back from the usual mid-year publication date in order to incorporate a short report on the Field and General Meeting which was held in Utah and Nevada in September/October 1989.
2.0 ANNUAL REPORT OF THE SUBCOMMISSION ON CARBONIFEROUS STRATIGRAPHY, 1988

2.1 SUBCOMMISSION OBJECTIVES

SCCS is engaged in a program of stratigraphic research with the ultimate aim of selecting stratotypes for one set of agreed worldwide chronostratigraphic units covering the whole of the Carboniferous, starting at the subsystem, and then proceeding to finer subdivisions.

To this end, the Subcommission has:

- Established a mid-Carboniferous Boundary for which a current Working Group is seeking a potential stratotype section.
- Contributed to the discussions of the independent Working Groups on Devonian-Carboniferous and Carboniferous-Permian Boundaries.
- Commenced deliberations on the designation of boundary stratotype sections for the principal subdivisions of the Carboniferous.

The work of the Subcommission forms an integral part of the statutory objective of ICS to develop a standard global stratigraphic scale, including its subdivisions, major boundaries and correlation criteria.

2.2 MEMBERSHIP AND OFFICERS

Membership in 1988 consisted of four Bureau Officers, 27 Titular Members of which three are Working Group Chairmen, and a Corresponding Membership of 340. The Subcommission has recently revised its membership list with all those on the 1988 list being requested to confirm in writing if they wished to continue their membership. Based on returns received, the total Corresponding Membership has now been reduced to approximately 200 although this may rise when this Newsletter is released.

SCCS holds biennial meetings, one in conjunction with the International Congress on Carboniferous Stratigraphy and Geology (four yearly intervals) and the other at a Field and General Meeting of the Subcommission midway between Congresses.

Officers to June 1989

CHAIRMAN - Dr. W.H.C. Ramsbottom, Brow Cottage, Kirkby Malzeard, Ripon, N.Yorks HG4 3RY England, U.K.

VICE-CHAIRMAN - Dr. R.H. Wagner, ENCASUR, Peñarroya-Pueblonuevo, (Córdoba), Spain.

SECRETARY - Dr. B.A. Engel, Department of Geology, University of Newcastle, N.S.W. 2308 Australia.

ASSOCIATE SECRETARY - Dr. Hisayoshi Igo, Institute of Geoscience, University of Tsukuba, Ibaraki 305 Japan.

Elections

Dr. Ramsbottom and Dr. Wagner will step down from their respective offices in July 1989, coincident with the International Geological Congress in Washington, DC. As a result, nominations for the position of Chairman were called for and a secret ballot of Titular/Bureau Members took place in January 1989, when Dr. Eva Paproth was chosen as Chair-elect from a field of three candidates. Subject to the formal ratification of this election, Dr. Paproth will initially serve for a four year term from July 1989. The current Secretary and Associate Secretary, having been in office for less than a full term, will continue in those positions. With this election, the Subcommission will revert to its former practice of having the Secretary act as Vice-Chairman for those meetings which the Chairman is unable to attend.

The membership wishes to place on record its sincere appreciation of the major contribution made by Dr. Ramsbottom and Dr. Wagner, both of whom have provided strong leadership to the Subcommission over a very long period. It is expected that their support will remain undiminished in their continuing role as Titular Members.

2.3 NATIONAL, REGIONAL, GLOBAL SUPPORT

The Subcommission has an international membership in which national allegiances are not stressed. Titular Membership including Chairmen of Working Groups is drawn from the following regions:

- Eastern Europe/Siberia (4);
- Western & Central Europe (7);
- North Africa (1);
- North America (7);
- South America (2);
- Peoples Republic of China (5);
- Japan (-), (+Assoc.Secretary);
- Australia (1), (+Secretary).

Vacancies currently exist for representatives from Japan and Angara to replace the late Prof. Minato and late Dr. Meyen. Elections will be held later this year to fill these vacancies.

Corresponding Membership is drawn from scientists in 26 countries including Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Czechoslovakia, Federal Republic of Germany, France, Hungary, India, Ireland, Japan, Malaysia, Norway, Peoples Republic of China, Poland, Portugal, Spain, Switzerland, The Netherlands, United Kingdom, USA, USSR, and Yugoslavia.
2.4 INTERFACE WITH OTHER INTERNATIONAL PROJECTS

SCCS has an interface with IGCP Project 211: Late Palaeozoic of South America. The 1986 Field and General Meeting was held in Argentina in conjunction with this Project. Close cooperation also exists with the Devonian-Carboniferous and Carboniferous-Permian Boundary Working Groups. Informal contact is also maintained with a number of other IGCP Projects.

2.5 ACCOMPLISHMENTS OF 1987-88

The Carboniferous Newsletter (No.6, July 1988) was re-established after a break of some years. It documents the principal achievements of the Subcommission during the period 1987-88. Important developments included:

(i) XI Carboniferous Congress, Beijing, 1987
 (Newsletter 6, p.8-10).

The Subcommission would like to record its sincere thanks to the Chinese Organizing Committee for presenting a most successful XI Carboniferous Congress during which we were given the opportunity to examine many excellent exposures of the Carboniferous sequence in China. Publications associated with the Congress have added materially to the literature dealing with this vast region.

(ii) Restructuring Of Subcommission Working Groups
 (Newsletter 6, P.3-4,13).

Reorganisation of the Working Groups was achieved by Chairman Ramsbottom by shifting the focus from numerous regional groups to three major categories, namely the mid-Carboniferous Boundary Working Group, and two new ad hoc International Groups dealing with "lower" and "upper" Carboniferous Subdivision. Chairmen of previous regional groups have the choice to continue or disband their groups as they wish. Further details of the re-structuring are given in the work plan for 1989.

(iii) Decisions taken by the Titular Membership
 (Newsletter 6, p.11-15).

At the General Meeting of SCCS held on September 1, 1987 at the Carboniferous Congress in Beijing, Chairman Ramsbottom raised the question of the subdivision of the Carboniferous. He reviewed briefly the history of the consensus which had been reached on the selection of a mid-Carboniferous Boundary and the activity of the current Working Party under the Chairmanship of Dr. H.R. Lane to designate a stratotype section.

Discussion then ensued on the desirability of bipartite or tripartite subdivision of the Carboniferous System, using the mid-Carboniferous Boundary as one of the datum horizons. All written and oral responses at the meeting supported the bipartite division, resulting in the acceptance of the motion that "primary subdivision of the Carboniferous be into two and not three divisions and that the boundary between the two divisions be taken at the level selected at Madrid for the mid-Carboniferous Boundary". After extensive favourable discussion the non-binding vote of those members present resulted in 36 For; none Against; with 2 Abstentions.

A subsequent meeting of the Titular Membership of SCCS was held on September 3, 1987 at which there were 16 of the 29 voting members present. Chairman Ramsbottom reviewed the events of the previous meeting of SCCS members and opened discussion on the matter noting that the final disposition of the subdivision question would be based on a postal ballot of all voting members. Discussion followed on the desirability of a bipartite system comprised of two Subsystems and the appropriate naming of such units. With the naming matter being set aside, the vote for a bipartite subdivision was taken with 13 in favour and 3 abstentions. A consequential motion from the floor that the two subdivisions be called Subsystems was passed 16 in favour and 0 against.

By postal ballot, the Titular/Bureau membership subsequently cast definitive votes on the issues involved, the details of which are documented in this Newsletter. With the substantial vote in favour of these proposals, it is expected that ratification of the decisions by ICS/IUGS will follow shortly. The Subcommission will then need to press on with the definition of boundary stratotypes, with the matter of global stratotype sections and points (GSSP) to be considered.

2.6 PUBLICATIONS 1987-88

Principal publications sponsored by the Subcommission and the XIth Carboniferous Congress are listed in Newsletter 6 (p.5-6,8-10).

Of special note was "Carboniferous of the World", Volume 2, a copy of which was presented to the Official Congress Ceremony. SCCS is most indebted to the editorial team who have produced the first two volumes and who are progressing as fast as possible with the remainder of the five volume series. Members who have not yet expressed their support in a tangible way are reminded that Volumes 1 and 2 can be obtained from EPISODES SECRETARIAT, 601 Booth St., Room 177, Ottawa, Ontario K1A 0E8, Canada. Individual requests may also be addressed to Mr. L.F. Granados, ENADIMSA, Doctor Esquerdo 138, 28007 Madrid, Spain. The moderate price of these volumes makes it possible for members to have copies on their personal and institutional library shelves.

- Volume 1 (China, Korea, Japan, SE Asia) US$30
 (incl.post)
- Volume 2 (Gondwana countries, North Africa) US$50
 (incl.post)

Papers issued by the mid-Carboniferous Boundary Group and those arising from the Field and General Meeting in Argentina, 1986 form valuable additions to our knowledge of the Carboniferous.
2.7 WORK PLAN FOR 1989

Consequent upon the restructuring of the Subcommission in Beijing, two new Working Groups were formed - one each on International "lower" and "upper" Carboniferous subdivision, for which the respective Chairmen elected were Dr. Paul Brenckle and Dr. C.F. Winkler Prins. Each was charged with the responsibility of organising a Working Group to evaluate potential boundaries which could provide further subdivision of their respective subsystems. Once suitable boundaries were identified, these committees would be dissolved and new Working Groups formed to investigate each particular boundary (see Chairman's reports, Newsletter 6, p.16, 19).

It is expected that the Field and General Meeting to be held in Provo, Utah and Nevada on September 24-30, 1989 will provide a forum for progress reports from each of the Working Groups as well as the field inspection of a potential North American mid-Carboniferous boundary stratotype. (Newsletter 6, p.2-3). This meeting will draw a large group of interested members and will represent the major event for SCCS in 1989. This Newsletter (7) has been held back from release until the report of this meeting could be included.

2.8 DONATIONS BY S.C.C.S. MEMBERS

The following donations have been received from SCCS Members in 1988 and 1989:

Dr. J. W. Baxter, U.S.A. US$100.00
Dr. P. Brenckle, U.S.A. US$ 25.00
Dr. J. L. Carter, U.S.A. US$ 50.00
Dr. K. J. Englund, U.S.A. US$ 25.00
Dr. Hisayoshi Igo, Japan US$ 71.55
Dr. K. Ishizaki, Japan AUS$ 40.00
Dr. T. B. H. Jenkins, Australia AUS$ 10.00
Dr. F. J. Jones, Australia AUS$ 20.00
Dr. N. Kashima, Japan US$ 20.32
Dr. H. W. Pfefferkorn, U.S.A. US$ 20.00
Drs. C.A. & J.R.P. Ross, U.S.A. US$ 22.00
Dr. S. Sakagami, Japan US$ 8.13
Dr. R. R. West, U.S.A. US$ 10.00
Dr. E. L. Zodrow, U.S.A. US$ 50.00
Anonymous, Argentina US$ 10.00
Anonymous, France US$100.00
Anonymous, France US$ 12.00
Anonymous, United Kingdom AUS$240.00
Anonymous, U.S.A. US$ 25.00

In the Newsletter 6, July 1988, a general request was made to members of SCCS to consider making donations to the Subcommission in order to expand the limited support which ICS is able to provide by way of subsidy. To date, the above members have responded to this request by giving generously (US$742 - US$323 in 1988 and a further US$494 in 1989). Without this support, the Subcommission would have been in deficit on its operations for both years. It is hoped that more members will respond to the plea for financial assistance during 1990.

At present we are fortunate to have a small cash surplus which accrued mainly during the lengthy interval between the last two Newsletters. With recent increases in both post-
al and printing charges in Australia this buffer will not support us for more than about two years after which further donations will become mandatory. As Secretary, may I extend my personal thanks to those donors who have kept the organisation financial.

2.9 PROGRESS REPORT ON VOLUME III of The Carboniferous of the World

The editors have used the northern summer holidays to get together in congenial surroundings and continue the onerous task of coordinating the various chapters handed in over the years by the different (and quite numerous) contributors. Most of the effort has been devoted to the large amount of material provided by the contributors from the USSR. The hundreds of pages of text, figures and plate explanations have been checked and corrected with regard to the English language which has posed many problems, probably because the original papers in Russian were translated by non-geologists. Editing has therefore become more arduous than is normally the case. The redrafting of text figures also required a major effort, particularly when large size tables had to be reorganised for publication in several different parts, more suited to the format of double pages.

However, the end of this part of the editing is getting closer and the editors hope to have Volume III at the printers before the end of 1989. The contributors have been requested to give urgent attention to the queries raised by the editors so that the last details may be dealt with during the next few months. The contents of Volume III include:

- Introduction
- Introduction to USSR
- European part of USSR
- Tianshan and Pamirs
- Kazakhstan
- Angaraland & surrounding marine basins
- Mongolia
- Turkey
- Stable Middle Eastern Platform
- Iran
- Afghanistan
3.0 SUBCOMMISSION FINANCIAL REPORT

STATEMENT OF INCOME AND EXPENDITURE 1987-88

INCOME (US$)

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance brought forward from 1987</td>
<td>1077.30</td>
</tr>
<tr>
<td>IUGS Allocation for 1988 (US$)</td>
<td>450.00</td>
</tr>
<tr>
<td>Donations of members</td>
<td>323.00</td>
</tr>
<tr>
<td>TOTAL INCOME</td>
<td>1850.30</td>
</tr>
</tbody>
</table>

EXPENDITURE (US$)

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationery Expenditure</td>
<td></td>
</tr>
<tr>
<td>Envelopes</td>
<td>24.96</td>
</tr>
<tr>
<td>Computer/A4 paper</td>
<td>29.04</td>
</tr>
<tr>
<td>Computer Labels</td>
<td>9.60</td>
</tr>
<tr>
<td>Total Stationery</td>
<td>63.60</td>
</tr>
<tr>
<td>Printing Costs</td>
<td></td>
</tr>
<tr>
<td>Letterheads</td>
<td>9.60</td>
</tr>
<tr>
<td>Photocopies</td>
<td>6.88</td>
</tr>
<tr>
<td>Laserprints Proofs</td>
<td>6.40</td>
</tr>
<tr>
<td>Newsletter (400 copies)</td>
<td>195.68</td>
</tr>
<tr>
<td>Computer disks/ribbon</td>
<td>40.00</td>
</tr>
<tr>
<td>Total Printing Costs</td>
<td>258.56</td>
</tr>
<tr>
<td>Postal Charges</td>
<td></td>
</tr>
<tr>
<td>Nov., 1987</td>
<td>15.44</td>
</tr>
<tr>
<td>Dec., 1987</td>
<td>1.60</td>
</tr>
<tr>
<td>Mch., 1988</td>
<td>24.38</td>
</tr>
<tr>
<td>May, 1988</td>
<td>2.40</td>
</tr>
<tr>
<td>Jun., 1988</td>
<td>0.80</td>
</tr>
<tr>
<td>Jul., 1988</td>
<td>30.02</td>
</tr>
<tr>
<td>Aug., 1988</td>
<td>167.72</td>
</tr>
<tr>
<td>Sep., 1988</td>
<td>2.19</td>
</tr>
<tr>
<td>Oct., 1988</td>
<td>14.72</td>
</tr>
<tr>
<td>Total Postal Charges</td>
<td>259.27</td>
</tr>
<tr>
<td>Secretarial Expenses</td>
<td></td>
</tr>
<tr>
<td>Part-time typing costs (15 hours @ AUSS10)</td>
<td>120.00</td>
</tr>
<tr>
<td>Miscellaneous Expenses</td>
<td></td>
</tr>
<tr>
<td>Cheque Book</td>
<td>2.40</td>
</tr>
<tr>
<td>Bank Charges</td>
<td>0.58</td>
</tr>
<tr>
<td>Total Miscellaneous Expenses</td>
<td>2.98</td>
</tr>
<tr>
<td>TOTAL EXPENDITURE</td>
<td>704.41</td>
</tr>
</tbody>
</table>

BALANCE SHEET:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance brought forward from 1987</td>
<td>$1077.30</td>
</tr>
<tr>
<td>PLUS Total Income 1987-1988</td>
<td>$773.00</td>
</tr>
<tr>
<td>LESS Expenditure 1985-88</td>
<td>$704.41</td>
</tr>
<tr>
<td>CREDIT balance carr. forward to 1989</td>
<td>$1145.89</td>
</tr>
</tbody>
</table>

EXPLANATORY NOTES:

(a) All AUSS income and expenditure has been converted where appropriate to US$ at a standard exchange rate of AUSS1.00=US$0.80.

(b) The operating surplus for 1987-88 operations of US$68.59 ($773.00 - $704.41) would have been a deficit without generous donations from members of the Subcommission. In addition the cost of postage for the Newsletter has been subsidised with some postal costs being absorbed by various National organisations.

BUDGET ESTIMATES FOR 1989

<table>
<thead>
<tr>
<th>ITEM</th>
<th>COST (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Printing</td>
<td></td>
</tr>
<tr>
<td>Letterheads (1 roam)</td>
<td>$ 18</td>
</tr>
<tr>
<td>Circular (350 copies)</td>
<td>$ 20</td>
</tr>
<tr>
<td>Newsletter (250 x 20 pages)</td>
<td>$ 96</td>
</tr>
<tr>
<td>2. Stationery</td>
<td></td>
</tr>
<tr>
<td>Paper, computer address labels</td>
<td>$ 72</td>
</tr>
<tr>
<td>Envelopes for circular, reports</td>
<td>$ 36</td>
</tr>
<tr>
<td>3. Postage Costs</td>
<td></td>
</tr>
<tr>
<td>Bureau letters(20g air @ $1)</td>
<td>$ 45</td>
</tr>
<tr>
<td>Postal ballot Tit.Mem.(30g@$1.50)</td>
<td>$ 34</td>
</tr>
<tr>
<td>Circular (250 x 20g surface @0.64)</td>
<td>$123</td>
</tr>
<tr>
<td>Newsletter (250 x 250g surface @$1.50)</td>
<td>$300</td>
</tr>
<tr>
<td>4. Part-Time Typing Assistance</td>
<td></td>
</tr>
<tr>
<td>Bureau typing (15 hours @ AUSS10)</td>
<td>$120</td>
</tr>
<tr>
<td>Secretarial support for "Carboniferous of The World", Vol.3</td>
<td>$200</td>
</tr>
<tr>
<td>Secretarial support for the Mid-Carboniferous Working Group</td>
<td>$200</td>
</tr>
<tr>
<td>Secretarial expenses required to organize the Biennial Meeting of SCCS in Provo, Utah & Nevada, Sept. 24-30, 1989 (incl. circulars, editorial preparation for Cour.Forschung.Senckenbergiana)</td>
<td>$320</td>
</tr>
<tr>
<td>TOTAL BUDGET EXPENSES</td>
<td>$1584</td>
</tr>
</tbody>
</table>

GRANT FOR 1989:

In March 1989, Professor J. Remane, Secretary-General of ICS has advised the Secretary that the sum of US$700 had been granted to the Subcommission for 1989 to be distributed as follows:

- SCCS Administration $300;
- Mid-Carboniferous Working Group $100;
- Biennial Meeting organization in Utah/Nevada $200;
- "Carboniferous of the World" - preparation $100.

This grant represents less than half of the anticipated expenditure for 1988-89 and hence support from member donations will continue to be of major significance to our viability.

Carboniferous Newsletter
4.1 BALLOT 1: SUBDIVISION OF THE CARBONIFEROUS SYSTEM

EXPLANATION: The General and Titular Meetings held at the 11th Carboniferous Congress in Beijing, September 1987, strongly endorsed the concept that the "primary division of the Carboniferous be into two and not three divisions and that the boundary between the two divisions be taken at the level selected at Madrid for the mid-Carboniferous boundary". This endorsement was followed by a postal ballot of Bureau/Titular Members, the results of which, after formal ratification of ICS/UGS, will become binding decisions of the Subcommission.

4.1.1 Proposal 1: SINGLE SYSTEM

"THAT THE CARBONIFEROUS COMPRISE A SINGLE SYSTEM"

Voting Result:
- (For - 15; Against - 4; Abstain - 2; No vote - 8)
The proposal was therefore adopted by 71% (15/21) of the voting members.

4.1.2 Proposal 2: BIPARTITE SUBDIVISION

"THAT THE PRIMARY DIVISION OF THE CARBONIFEROUS SHALL BE INTO TWO AND NOT THREE DIVISIONS, AND THAT THE BOUNDARY BETWEEN THE TWO DIVISIONS SHALL BE TAKEN AT THE LEVEL SELECTED IN MADRID AS THE MID-CARBONIFEROUS BOUNDARY".

Voting Result:
- (For - 21; Against - 0; Abstain - 0; No vote - 8)
The proposal was therefore adopted by 100% (21/21) of the voting members.

4.1.3 Proposal 3: SUBSYSTEMS

"THAT EACH OF THE TWO DIVISIONS OF THE CARBONIFEROUS BE RECOGNISED AS A SUBSYSTEM".

Voting Result:
- (For - 18; Against - 3; Abstain - 0; No vote - 8)
The proposal was therefore adopted by 86% (18/21) of the voting members.

Details of votes cast by Titular and Bureau Members:

<table>
<thead>
<tr>
<th>Executive Bureau</th>
<th>PROP.1</th>
<th>PROP.2</th>
<th>PROP.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. W.H.C. Ramsbottom</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Dr. R.H. Wagner</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Dr. B.A. Engel</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Dr. Hisayoshi Igo</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Past Chairman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. A. Bouroz (France)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East Europe/Siberia

Dr. O.L. Einar	NOESP	NOESP	NOESP
Dr. A.D. Grigorieva	NOESP	NOESP	NOESP
Dr. E.A. Reitlinger	NOESP	NOESP	NOESP
Dr. M.N. Solovieva*	NOESP	NOESP	NOESP

West/Central Europe

Dr. J. Doubinger	YES	YES	YES
Dr. J.P. Lavene	YES	YES	YES
Dr. E. Paproth	YES	YES	YES
Dr. C.F. Winkler Prins	YES	YES	YES

North America

Dr. T. Dutro Jr	YES	YES	YES
Dr. M. Gordon Jr	NOESP	NOESP	NOESP
Dr. R.M. Kosanke	NO	YES	NO
Dr. B.L. Mamet	NOESP	NOESP	NOESP
Dr. P.K. Sutherland	YES	YES	YES

South America

| Dr. S. Archangelsky | YES | YES | YES |
| Dr. A.C. Rocha Campos | YES | YES | YES |

Peoples Republic of China

Dr. Li Xingxue	ABS	YES	YES
Dr. Gao Lianda	YES	YES	YES
Dr. Guo Hongzun	ABS	YES	YES
Dr. Yang Shifu	YES	YES	YES
Dr. Yang Xilu	NOESP	NOESP	NOESP

North Africa

| Dr. M. Weyant | YES | YES | YES |
| Dr. J. Roberts | YES | YES | YES |

Australia

Working Group Chairmen	NO	YES	NO
Dr. P.L. Brenkle	NO	YES	NO
Dr. H.R. Lane	NO	YES	NO

TOTAL

<table>
<thead>
<tr>
<th></th>
<th>15 YES</th>
<th>21 YES</th>
<th>18 YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 NO</td>
<td>0 NO</td>
<td>3 NO</td>
<td></td>
</tr>
<tr>
<td>2 ABS</td>
<td>0 ABS</td>
<td>0 ABS</td>
<td></td>
</tr>
<tr>
<td>8 NOESP</td>
<td>8 NOESP</td>
<td>8 NOESP</td>
<td></td>
</tr>
</tbody>
</table>

DECLARATION OF POLL

Declared as a true record of the SCCS Bureau/Titular Members’ Poll which closed on October 31, 1988.

- A voting paper was received from Dr. M.N. Solovieva after the ballot had closed and the results had been forwarded to ICS for ratification.

(Dated November 3, 1988) Brian A. Engel, Sec. SCCS
4.2 BALLOT 2: WEST EUROPEAN REGIONAL STRATIGRAPHIC CLASSIFICATION

EXPLANATION: In compliance with the recommendation made during the General Assembly of the Subcommission in Krefeld, 1971 (George & Wagner, 1972), formal names have been proposed to replace the Westphalian A, B, C, and Stephanian A Stages. In addition, new information on the Cantabrian type area has resulted in the need to modify the position of its boundary and its stratotype.

As required by Subcommission regulations, the proposed names and stratotypes have been discussed during official meetings of SCCS (Carboniferous Congresses in Madrid, 1983 and Beijing, 1987). In addition, the full details of the biostratigraphy and correlations in regard to these stratotypes have been published in the references listed below. Bureau and Titular Members of SCCS were asked to consider five proposals outlined below and vote upon the substantive issues involved. The results of this postal ballot, which closed on February 28, 1989, constitute binding decisions of the Subcommission which have now been sent to ICS/TUGS for formal ratification.

Voting Members of the Subcommission were individually advised by letter of the voting procedures as outlined in the Guidelines and Statutes of ICS (Clause A.II.(5)), namely that any member who does not return the voting paper will be deemed to have cast a "YES" vote for the purpose of the ballot. Each non-voting member received a further personal reminder letter two weeks before the close of the postal ballot. Of the total of 29 Titular/Bureau Members, 21 cast a vote with the remaining 8 members who failed to reply being counted in the affirmative.

4.2.1 Proposal 1: NAME CHANGE & STRATOTYPE DESIGNATION
Name Change: Langsettian Stage to replace Westphalian A Stage.

Stratotype: Located on the waterworks property on the south bank of the River Little Don, South Yorkshire, England, 1 km east of Langsett, adjacent to the A616 Sheffield-Manchester road [National Grid Reference SE 2215 0041].

Reference: Owens, Riley & Calver, 1985, p.463(fig.2), 466-467, plate 1.

Voting Result:
19 Yes (11 Yes + 8 No Response);
3 No; 7 Abstained.

This proposal has therefore been adopted by 86% (19/22) of the voting membership.

4.2.2 Proposal 2: NAME CHANGE & STRATOTYPE DESIGNATION
Name Change: Duckmantian Stage to replace Westphalian B Stage.

Stratotype: Located on the north side of a disused railway cutting at Duckmanton near Arkwright Town, 4 km east of Chesterfield, north Derbyshire [National Grid Reference SK 4237 7040].

Voting Result:
19 Yes (11 Yes + 8 No Response);
3 No; 7 Abstained.

This proposal was therefore adopted by 86% (19/22) of the voting membership.

4.2.3 Proposal 3: NAME CHANGE & STRATOTYPE DESIGNATION
Name Change: Bolsonian Stage to replace Westphalian C Stage.

Stratotype: Located on the east bank of the River Doe Lea near Patterton, north Derbyshire [National Grid SK 4590 6930].

Voting Result:
19 Yes (11 Yes + 8 No Response);
3 No; 7 Abstained.

This proposal was therefore adopted by 86% (19/22) of the voting membership.

4.2.4 Proposal 4: CHANGE OF STRATOTYPE
Stratotype: Approval to change the position of the base of the Cantabrian Stage and its stratotype from the base of the Lores Limestone in the Ojosa Section (as approved in Krefeld, 1971) to a higher position at the base of the Villanueva Marine Formation in the section at Velilla de Tarilonte, N.W. Palencia, Spain.

References: George & Wagner, 1972; Wagner & Winkler Prins, 1985a; Wagner & Winkler Prins, 1985b.

Voting Result:
19 Yes (11 Yes + 8 No Response);
2 No; 8 Abstained.

This proposal was therefore adopted by 90% (19/21) of the voting membership.
4.2.5 Proposal 5: CHANGE OF NAME

Name Change: Barruelian Stage to replace Stephanian A Stage.

Stratotype: To remain unchanged from the decision taken at Krefeld, 1971.

References: George & Wagner, 1972; Wagner & Winkler Prins, 1985a; Wagner & Winkler Prins, 1985b.

Voting Result:
19 Yes (11 Yes + 8 No Response);
2 No; 8 Abstained.

This proposal was therefore adopted by 90% (19/21) of the voting membership.

REFERENCES:

INTERNATIONAL COMMISSION OF COAL PETROLOGY

President Monica Wolf has advised that ICCP will hold its 43rd Annual Meeting in September 1991 in Porto Alegre, Brazil, just prior to the Carboniferous Congress. An excursion is planned which may well combine with one of our pre-Congress trips. Dr. Z. Correia da Silva is organising the meeting.

Dr Wolf also drew attention to the fact some confusion has arisen because of the use of XII ICCP on the first Carboniferous Congress circular. In future the abbreviation will appear as XII ICC-P and members of both organisations are asked to take note of the difference.

DECEMBER OF POLL

Declared as a true record of the SCCS Bureau/Titular Members’ Poll which closed on February 28, 1989.

* A voting paper was received from Professor Yang Shihu after the ballot had closed and the results forwarded to ICS for ratification.

(Dated March 10, 1989) Brian A. Engel, Sec. SCCS
5.0 AN OUTLINE HISTORY OF THE I.U.G.S.
SUBCOMMISSION ON CARBONIFEROUS
STRATIGRAPHY: ACHIEVEMENTS &
OBJECTIVES

by R.H. Wagner, ENCASUR, Peñarroya-Pueblonuevo,
(Córdoba), Spain.

Foreword by B.A. Engel, Secretary: Dr Wagner has been an active mem-
ber of SCCS for a very long time having served his 'apprenticeship' as
Secretary from 1963-76 with Professor W.P. van Leckwijk, Professor T.N.
George and Dr. A. Bourzo, and then in the position of Chairman from 1982-
86. While he was on a research visit to Australia in late 1988, I expressed
my disappointment to him that, on taking over as Secretary, I found there
were no comprehensive archival records of the activities of the Subcommis-
sion. Apart from an excellent historical summary by A. Bourzo, C.F.
Winkler Prins and W.B. Saunders in Newsletter No.1 (1980), it was apparent
that many activities of the Subcommission had been documented in a variety
of publications (including the 'Compte Rendu'), many of which are known
only by the long serving members of the Subcommission.

In response, Dr. Wagner has since mailed to me a large number of reprints
which I will endeavour to catalogue and pass on to my successors, and in
this way the historical record of the organisation will have some measure of
continuity. To this end, I would ask others who have had a long mem-
bership with the Subcommission to send me any relevant reprints/photocopies or
even lists of publications which could form part of that record.

Also while in Australia, Dr. Wagner was prevailed upon to write the follow-
ing article on the activities of the Subcommission. Being isolated in the ant-
ipodes, he did not have access to his extensive library but had to depend
upon his fantastic memory for most of the information. While he may be
horified to see the result appear in print without further revision, I felt it
was timely that it should be presented in this Newsletter. I hope it will form
the foundation of a published record of the Commission and if other mem-
bers have any comments, additions, corrections, etc. both Dr. Wagner and I
would be most grateful for your cooperation.

Anyone familiar with the history of the classification of Car-
boniferous strata will recognise the first Heerlen Congress
(Congrès pour l’avancement des Etudes de la Stratigraphie
du Carbonifère), held in 1927, as a milestone. Organised
on the initiative of the Dutch, German and Belgian palaeo-
botanists W.J. Jongmans, W. Gothan and A. Renier, it mark-
ed the first occasion on which Carboniferous stratigraphers
and palaeontologists of various Western European countries met
to work out a common scheme for the correlation and nomen-
cature of the Carboniferous strata in their respective areas.
If this was still a long way from being a truly international
stratigraphic classification, it broke through the barriers of
local, national interests, and promoted an international coop-
eration that has spread ever wider in successive meetings,
right up to the present day. The so-called Heerlen Classifica-
tion (in honour of the mining town in the southeastern corner
of the Netherlands, right up against the German and Belgian
borders) became a well known and widely used scheme,
despite several drawbacks inherent to the special conditions
of sedimentation and basin history in the different parts of
northwestern Europe.

The original classification arrived at in Heerlen, 1927, was
modified and elaborated in more detail in successive Heer-
len congresses (1935, 1951).

In 1952, during the XIX International Geological Congress
held in Algiers, the Commission on the Subdivision of the
Carboniferous was constituted as part of the IGC. This was
later incorporated with IUGS in 1963. The establishment of
this Commission marked a certain duality of organisation
since it had been the International Congress of Carboniferous
Stratigraphy and Geology that concerned itself with the
stratigraphic classification of the Carboniferous System. It is
noted that the Carboniferous Congress is unaffiliated with
IGC or IUGS. This duality was resolved, to a certain extent,
at the 4th Heerlen Congress (1958) when the "Commission
on the Subdivision of the Carboniferous" was merged with
the "Subcommission on Carboniferous Stratigraphy" of the
Commission on Stratigraphy of the IGC (van Leckwijk,
1960).

During the 1958 Heerlen Congress (the last one held in the
Dutch mining town) a first attempt was made to widen the
scope of the purely Northwest European stratigraphic clas-
sification by means of a circular which Jongmans sent out to
canvas opinion on whether the Carboniferous should be
regarded as a single system or as two different systems or
subsystems to be called Mississippian and Pennsylvanian on
the American pattern. Although the response to this question
got against the latter proposal, it marked the first instance
in which the American classification of Carboniferous stra-
tigraphy was considered by the Heerlen Congress. The same
Congress the All-Union Stratigraphic Committee of the
USSR proposed a correlation between their classification of
the Carboniferous and that elaborated at Heerlen. Although
some elements of the proposed correlation gave rise to seri-
ous doubts as expressed in the later literature, it showed
the interest taken by Carboniferous stratigraphers in the Soviet
Union to arrive at an international consensus on chrono-
stratigraphic units.

It does not come amiss here to observe that the circular sent
out by Jongmans prior to the 1958 Heerlen Congress marked
the final attempt by one of the original organisers of the Car-
boniferous Congress to increase the international scope of
the stratigraphic classification promoted by this congress.
Jongmans passed away in 1957 and thus failed to see the
response generated by his circular raising a question that is
still the subject of current debate.

In 1960, at the IGC held in Copenhagen, the Chairman of the
IUGS Subcommission on Carboniferous Stratigraphy, W.P.
van Leckwijk, reported on progress made during the Heer-
len Congress of 1958 (van Leckwijk, 1964a). This set a pat-
tern which persists to the present day. Carboniferous stratigraphers meeting at an International Congress of Car-
boniferous Stratigraphy and Geology were to make recom-
endations which would be passed on to the International
Commission of Stratigraphy at an International Geological
Congress. This made the Carboniferous Subcommission
atypical since it would meet at Carboniferous Congresses
and not at the IGC, as would other Subcommissions. Its origins were acknowledged by the Commission and the Statutes incorporated a reference to Subcommissions with long established practices which could continue. Indeed, Carboniferous stratigraphers, meeting at Carboniferous Congresses, would not be likely to congregate again in large numbers on the occasion of an International Geological Congress.

The size and scope of the Carboniferous Congresses had steadily grown over the years and had, consequently, strained the resources of Heerlen as a Congress venue. The 5th Congress was therefore held in Paris (in 1963). At this congress the IUGS Subcommission on Carboniferous Stratigraphy met as a general gathering of Carboniferous stratigraphers without a formal membership, but with W.P. van Leckwijk as Chairman. The recommendations made in Paris were passed on by the Chairman in 1964 at the XXII IGC held in India.

The first stirrings of an independent existence of the Subcommission on Carboniferous Stratigraphy (SCCS) came with a meeting called specially for SCCS at Sheffield 1965, with invited contributions which were distributed in 1967 (reprinted in 1979).

In the subsequent Carboniferous Congress, held in Sheffield, 1967, the SCCS was accorded the privilege of a separate meeting, and its proceedings were published as a special section of the Congrès Rendu of this Congress. The same pattern was repeated in Krefeld, 1971, at the 7th Carboniferous Congress. Meanwhile, the Subcommission had met, now under the Chairmanship of T.N. George (Van Leckwijk had become Secretary General of IUGS), at Liège (1969). This meeting was held conjointly with the Commission Internationale de Microflore du Paléozoique, gave rise to the publication of a book edited by Streel and Wagner (1970). The meeting at Liège saw the formal institution of Field Meetings (to be called Field and General Meetings) intercalated between the General Assemblies at Carboniferous Congresses, to be advertised and promoted by the SCCS Secretary. The first meeting of this kind (1970) was held in Northwest Spain, an area of western Europe that had only recently become well known geologically and that had not played a role in the original Heerlen Classification. This area was written up as a special publication issued in 1971. The subsequent Field and General Meeting was held in Czechooslovakia in a conscious effort to expand first hand information beyond the original area of northwestern Europe considered for the Heerlen Classification. The Geological Survey of Prague published a field guide in 1973 and issued a comprehensive publication in 1977.

The organisation of SCCS also changed in order to reflect an increasing worldwide interest in its operations. It is noted that a representation on a national basis has been avoided from the start, since this would have placed undue emphasis on the relatively small west European countries that provided the original stimulus for the Heerlen Classification but which were largely segments of a single depositional area, stretching from Ireland in the West to Poland in the East. Titular membership was therefore allocated on the basis of stratigraphic intervals within certain major areas in the world, without regard to national boundaries and the nationality of the people charged with collating the information on the interval and area involved. The Titular Members were chairmen of Working Groups organised on this pattern, and the idea was that reports of progress would be given at General Assemblies and publications generated by these Working Groups, so as to build up a body of information reaching across national boundaries and language barriers. This organisation has worked only up to a point. Few members were able to encompass areas much beyond their own national boundaries and this proved a severe hindrance in the much fragmented west and central European area.

Voting procedures had been informal up to the meeting at Prague in 1973; quite simply everybody who bothered to turn up at a meeting could have his or her vote registered. This changed as a result of guidance from the Commission on Stratigraphy of IUGS, limiting the vote to Titular Members. The Executive Bureau was also formalised at this meeting; the Secretary became also Vice-Chairman and an Associate Secretary was appointed to assist the Secretary and take over as such when the Secretary had to act as Chairman in the absence of the SCCS Chairman. It was agreed that the Associate Secretary would take over from the Secretary when the latter retired at the end of his term. The Titular Membership, heavily tilted towards western Europe as a result of historical precedence (the Heerlen Classification), was also expanded to give representation to the various major areas of Carboniferous rocks in different parts of the world.

Prior to the meeting at Prague, at the 7th Carboniferous Congress held in Krefeld, 1971, the Heerlen Classification was modified to reach its present form with two subsystems, the Dinantian and Silesian, comprising five series, the Tournaissian, Viséan, Namurian, Westphalian and Stephanian,
with subordinate stages. No formal stages were recognised for the Tournaisian and Viséan series traditionally subdivided on the basis of goniatite and coral-brachiopod zones, the goniatite zonation for the Namurian was converted into a set of stages based on stratotypes in the British Isles (although some of the names employed for these stages tend to suggest other areas in western Europe), the four stages of the Westphalian Series retained their informal connotations A, B, C and D, and the Stephanian Series was subdivided into the Cantabrian and A, B, C stages. It was agreed at Krefeld that the informal connotations A, B, C, D would be replaced by formal stage names as soon as stratotypes could be erected for these stages. Proposals to this effect were only made as late as 1983.

A major step was taken in 1975 with the 8th Carboniferous Congress held in Moscow. During this congress the Chairman and Secretary of the Subcommission, together with Titular Members representing different parts of the world (Western Europe, USSR, North America) proposed an integrated scheme of major chronostratigraphic units applicable throughout the Palaeoequatorial Belt. The Heerlen Classification was regarded as a regional stratigraphic classification with equal rights to that used in the Soviet Union and those applied in different parts of North America. Elements of the different schemes were used to produce a general subdivision into two subsystems, called the Mississippian and the Pennsylvanian but with a boundary not necessarily equivalent but approximating to that found in North America, and three series approximating to the Lower, Middle and Upper Carboniferous of the USSR.

This proposal was debated extensively, but no decisions were reached (people needed time to think about it all) beyond an official recommendation to use lower, middle and upper Carboniferous as informal units worldwide. At this time the titular membership of SCCS was expanded to give representation to all the major areas of the world where Carboniferous strata were found in quantity.

The program of field meetings was continued with a very successful meeting in Turkey (1978), organised through the Mineral Research and Exploration Institute of Turkey (Maden Tektik ve Arama Enstitusu). MTA printed a field guide and the proceedings of this meeting were edited but not published, although there is still a formal commitment to do so. Turkey is an area which combines Tethys with European Plate in the north and Gondwana Plate in the south, and is obviously of interest for world Carboniferous stratigraphy and tectonic development.

Further internationalisation occurred with the General Assembly on the occasion of the 9th Carboniferous Congress held at Washington and Champaign/Urbana in Illinois, USA (1979). Although few decisions were taken by SCCS during this meeting (its program was less ambitious than that carried out in Moscow where SCCS functioned as one of the major sections of the Congress), it marked the increased involvement of North American geologists.

<table>
<thead>
<tr>
<th>CHAIRMAN</th>
<th>TERM OF OFFICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Willem J. Jongmans</td>
<td>1954-1957</td>
</tr>
<tr>
<td>Professor William P. van Leckwijk</td>
<td>1957-1965</td>
</tr>
<tr>
<td>Professor T. Neville George</td>
<td>1965-1974</td>
</tr>
<tr>
<td>Dr. Alexis Bouroz</td>
<td>1974-June 1980</td>
</tr>
<tr>
<td>Dr. W.H.C. Ramsbottom</td>
<td>July 1980-June 1982</td>
</tr>
<tr>
<td>Dr. R.H. Wagner</td>
<td>July 1982-June 1986</td>
</tr>
<tr>
<td>Dr. W.H.C. Ramsbottom</td>
<td>July 1986-June 1989</td>
</tr>
<tr>
<td>Dr. Eva Paproth</td>
<td>July 1989-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECRETARY</th>
<th>TERM OF OFFICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. R.H. Wagner</td>
<td>1963-1976</td>
</tr>
<tr>
<td>Dr. C.F. Winkler Prins</td>
<td>1976-June 1982</td>
</tr>
<tr>
<td>Dr. B. Saunders</td>
<td>July 1982-June 1986</td>
</tr>
<tr>
<td>Dr. W.L. Manger</td>
<td>July 1986-Sept 1987</td>
</tr>
</tbody>
</table>
| Dr. B.A. Engel | Sept. 1987-

<table>
<thead>
<tr>
<th>ASSOCIATE SECRETARY</th>
<th>TERM OF OFFICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. C.F. Winkler Prins</td>
<td>1973-1976</td>
</tr>
<tr>
<td>Dr. B. Saunders</td>
<td>1976-June 1982</td>
</tr>
<tr>
<td>Dr. W.L. Manger</td>
<td>July 1982-June 1986</td>
</tr>
<tr>
<td>Dr. B. Engel (Acting)</td>
<td>Oct. 1986-Sept 1987</td>
</tr>
</tbody>
</table>
| Dr. Hisayoshi Igo | Sept. 1987-

A change in approach commenced in 1981, under the chairmanship of W.H.C. Ramsbottom, who organised a very successful symposium in Leeds, England, on the faunal and floral changes at a mid-Carboniferous boundary roughly equivalent to the Mississippian Pennsylvanian boundary of the North Americans and the Lower-Middle Carboniferous boundary of the USSR. Bouroz et al. (1978), during the Moscow Congress (1975), had pointed out the importance of this boundary which they suggested may have coincided with the start of the Gondwana Ice Age, and the Leeds meeting confirmed that noticeable changes occurred in major faunal and floral groups at or near this boundary. The proceedings of the Leeds meeting were handed out to participants but were unfortunately not published. At this meeting an ad hoc committee was created under the chairmanship of H.R. Lane who was charged with a full analysis of the biostratigraphic information and the selection of a proper horizon at which the international (major) mid-Carboniferous Boundary should be placed. This approach is that followed by the various systemic boundary committees in the Commission on Stratigraphy and has its precedent in the Silurian/Devonian boundary. By focusing upon this part of the Carboniferous there was a tacit admission that this system divides naturally into two parts, be they called Mississippian and Pennsylvanian or otherwise, and that one should try to pinpoint the position of the boundary between these two parts.

The mid-Carboniferous Boundary Committee duly reported during the SCCS General Assembly at Madrid, 1983 (10th Carboniferous Congress) and a decision was reached to place this boundary at a level coincident with the incoming of the conodont Declinognathus nodulifera. The committee chaired by Lane has had a number of meetings and has published a special issue of the Senckenberg Courier in 1985 as well as a number of papers in the Compt rendu of the 10th Car-
boniferous Congress. Currently, this committee is preparing to select a suitable stratotype for the mid-Carboniferous Boundary.

Bouroz et al. (1978) pointed out that the various chronostratigraphic classifications in use were applicable only for the Palaeoequatorial Belt of Carboniferous times, and that the southern and northern hemisphere areas (Gondwana and Angara Realms) posed different problems. Generally speaking, the biostratigraphic zonations developed for the Palaeoequatorial Belt areas can be applied with certain modifications in lower Carboniferous (Mississippian) strata but are inapplicable for middle and upper (Pennsylvanian) strata. In fact, Gondwana stratigraphy has to combine biostratigraphic information with radiometric dating and palaeomagnetic reversals to produce correlations with other parts of the world. It is felt that climatic changes in the Pennsylvanian may supply the boundaries to major chronostratigraphic units worldwide, including the Gondwana and Angara areas. This requires an approach that is not wholly biostratigraphic and stratiographic with faunal and floral controls. The Gondwana representatives on the Subcommission highlighted the special problems with regard to their area.

In view of these problems the SCCS requested a Field and General Meeting in Argentina which took place in 1986. This allowed members of the Subcommission not personally familiar with the Carboniferous of Gondwanaland to see for themselves the relative paucity of biostratigraphic elements in middle to upper Carboniferous (Pennsylvanian) strata and to think about ways and means of integrating major chronostratigraphic units of the Carboniferous in the Palaeoequatorial Belt with those that may be recognised in the Gondwana and Angara areas. These problems will be further examined in 1991 when the International Congress of Carboniferous and Permian Stratigraphy and Geology meets in Argentina. The organisers of the Field Meeting produced a useful field guide and a book summarising information on the Carboniferous (and some Permian) in the Argentine Republic.

A General Assembly of SCCS was held in Beijing in 1987, for which the Chinese organisations produced a book with proposed boundary stratotypes in China, and provided a special field trip to Gansu in order to examine a possible mid-Carboniferous Boundary stratotype. Further candidates for a boundary stratotype will be examined in 1989 when the Field and General Meeting of SCCS is due to visit localities in Utah and other parts of the mid-western United States of America.

The Chairmen of inactive Working Groups on stages and series in different parts of the world were formally invited to deactivate by the Chairman of SCCS, who appointed two ad hoc committees, chaired by P. Brenckle and C. F. Winkler Prins, who were given the task of preparing proposals on the subdivision of lower (Mississippian) and upper (Pennsylvanian) parts of the Carboniferous, worldwide. This followed upon a vote to subordinate the Carboniferous into these two major units, and is a natural follow-up on the selection of the mid-Carboniferous Boundary separating these major chronostratigraphic units.

Finally, there is an ongoing program of compilation of stratigraphic information for the IUGS Publication series entitled "The Carboniferous of the World". This represents a major effort of international cooperation with two volumes published on China and the Far East (Vol.I) and the Gondwana countries including North Africa (Vol.II). A third volume comprising the USSR and the Middle East is in an advanced stage of editing and large parts of Volume IV (North America and Europe outside the USSR) are available in manuscript. A final volume (Vol.V) should contain plate tectonic reconstructions and an integration of the published information with worldwide correlation charts.

MEETING OF THE I.C.C.
PERMANENT COMMITTEE

The Permanent Committee of ICC has arranged to meet in Buenos Aires on October 9-11, 1989. Members will be briefed on all activities to date, excursion plans, and other managerial matters including potential hosts for the next Congress. About half of the 20 members have indicated their intention to be present.

NATIONAL COMMITTEE OF GEOLOGY IN COLOMBIA

by Jorge E. Valdidi W., Instituto Nacional de Investigaciones Geologico-Mineras (INGEOMINAS), Diagonal 33 No.34-53, Bogotá, Colombia, South America.

Following earlier suggestions presented at a meeting held in Bogotá, a committee entitled "Comité Colombiano de Minería" was formed during sessions of the VII Congreso Colombiano de Minería, at Medellín, on July 17, 1987.

Alberto Lobo-Guerrero Uschegui (INGEOMINAS) President
Jorge E. Valdidi W. (INGEOMINAS) Secretary
Dr. Jorge Briuva B. Univ. Nacional de Colombia, Depto Geociencias, Bogotá.
Dr. Jorge Jullián Restrepo, Univ. Nacional de Colombia, Depto de Geociencias, Medellín.
Dr. Eduardo Gómez Reyes, Univ. Nacional de Colombia, Fac. de Minas, Medellín.
Dr. Luis Albino León, Univ. Indist. de Santander, Fac. de Geol., Bucaramanga.
Dr. Jorge E. López, Univ. EAPFT, Depto de Geol., Medellín.
Dr. Laureano Hernández Pinza B. Univ. Pedag. y Tecnol. de Colombia, Fac. de Minas, Bogotá.
Dr. Alberto Querado, Escuela de Ing. de Antioquia, Depto Geol., Medellín.
Dr. Antonio Rivera, Universidad de Caldas, Fac. de Geol., Manizales.
Dr. Ruben Llinda, Soc. Colombiana de Geología, Bogotá.
Dr. Jorge E. Valdidi W., Asoc. de Geol. Egresados de la Univ. Nacional.
Dr. Rafael Velázquez, Asoc. Colombiana de Geólogos, Ingen., Geol. de Minas, Metal. y Petró., AGEMPET.
Dr. Rafael Valderrama, Asoc. Colombiana de Geol. y Geof. del Petróleo, ACOGP.

At the same event a National Committee for the IGCP was named:
Jorge Jullián Restrepo, Univ. Nacional de Medellín, Carrera de Geol., President
Jairo Mejía, Univ. Nacional de Colombia, Depto de Geociencias, Bogotá, Vice President
Víctor Eduardo Pérez, ECOPETROL, Bogotá, Secretary
Albinio León (Univ. Industrial de Santander)
Antonio Rivera, Univ. de Caldas
Carlos Ullona, INGEOMINAS
Fernando Etayo, Univ. Nacional, Bogotá
Alberto Forero, Univ. Nacional, Bogotá
Herman Duque, INGEOMINAS
6.0 S.C.C.S. FIELD AND GENERAL MEETING, UTAH-NEVADA, SEPTEMBER 1989

GENERAL MEETING

The biennial General Meeting of the Subcommission was convened in Provo, Utah on September 25-26, 1989 with the new chairman Dr. Eva Paproth presiding. The central focus of the meeting concerned the identification of potential horizons suitable for further subdivision of the Carboniferous. Following decisions taken in Beijing, two ad-hoc committees had been formed on the Lower and Upper Carboniferous, chaired respectively by Dr. P. Brenckle (USA) and Dr. C.F. Winkler Prins (Netherlands). These committees were charged with the evaluation of biostratigraphic horizons which might be of value for series/ stage level subdivisions of the Carboniferous on an intercontinental basis. Identification of these potential horizons will direct SCCS research efforts towards meeting the IUGS mandate to develop an intercontinental classification of the Carboniferous.

The outcome of the deliberations of these two committees was presented to the meeting, with one day being provided for each time division. During the morning sessions, each chairman provided a summary of the contributions of his committee, followed by an extended discussion period. Afternoon sessions were devoted to the presentation of individual papers by members who attended the meeting.

The Subcommission was privileged to hold this meeting in the Conference Center (Hamran Building) on the campus of Brigham Young University, Provo, Utah. Both the meeting and excursion facilities were organised by our gracious host Dr. Morris S. Petersen, Head of the Department of Geology at the University. All members present would like to place on record our sincere thanks for the warm reception we received both on the campus and at the dinner to which we were invited in the home of Morris and his wife Donna.

Papers presented on September 26 included:

G. Hahn - Palaeobiogeographic distribution and biostratigraphic significance of Lower Carboniferous trilobites, a review (presented by B.A. Engel).
G.D. Sevastopulo, N.G. Lane & J.A. Waters - Stratigraphical distribution of crinoids and blastoids in the Lower Carboniferous.
G.D. Webster & E. Groessens - Conodont subdivision of the Lower Carboniferous.

Papers presented on September 25 included:

C.F. Winkler Prins (Chairman) - Upper Carboniferous (Pennsylvanian) Boundaries Working Group Report.
B. Owens, W.J. Varker & R.A. Hughes - Lateral biostratigraphic consistency across the Mid-Carboniferous Boundary: a section close to the basin margin.
W.H. Gillespie & K.J. Englund - New observations on the Mississippian - Pennsylvanian boundary in the Appalachian Basin, U.S.A.
W.L. Manger & P.K. Sutherland - Anomalies in fusulinid-based and ammonoid/conodont-based correlations, Morrowan-Atoak Series, Middle Carboniferous.
R.M.C. Eagar - A recently found band of non-marine pelecypods in the "Supai" of Mogollon Rim, Arizona, and its correlation with a horizon in the Monongahela succession of Pennsylvania (Poster paper).

As a result of the presentations, six stratigraphic levels were nominated as being worthy of further detailed investigation. Three of these are located between the Devonian-Carboniferous and Mid-Carboniferous boundaries and a further three between the Mid-Carboniferous and Carboniferous-Permian boundaries. Details of these horizons and the proposed mode of future operations are described below.

Papers presented at the meeting were issued in abstract form to those in attendance and the full manuscripts will be printed in the meeting volume to be published in the Courier Forschungsinstitut Senckenberg as soon as possible.

Carboniferous Newsletter
FIELD MEETING

On September 27, most members left Provo on a four day field excursion which was ably led by Dr. Gary Webster (Washington State University). The excursion visited a number of important exposures and potential Mid-Carboniferous boundary stratotype sections in Utah and Nevada, paying particular attention to the section in Arrow Canyon, Nevada.

Detailed logs of the following sections were provided by the excursion leader, some of which were not visited during the excursion, due to the limited time available:
- Lake Point Section, Utah
- Granite Mountain Section, Nevada
- Frenchmans Mountain Section, Nevada
- Trough Springs Section, Nevada
- Skunk Spring - Willow Wash Section, Nevada
- Arrow Canyon and Dry Lake Sections, Nevada
- Las Vegas Range Section, Nevada

In their depositional setting, Frenchmans Mountain Section developed furthest to the east with the Granite Mountain Section being located westwards, off the carbonate shelf. The Trough Springs Section is also a little further off the shelf with Arrow Canyon Section being perhaps as far west as Granite Mountain Section. The Las Vegas Section is located the greatest distance west of the platform and shelf.

Of the alternatives for a boundary stratotype, only two were considered potential candidates namely Arrow Canyon and Trough Springs Sections. In the latter case, work is currently in progress by Dr. Webster but it is not far enough advanced to make any final conclusions as to its suitability. Amongst the other sections visited, Lake Point represents the wrong facies with no evidence of an evolutionary sequence of conodonts at the boundary level; Frenchmans Mountain Section contains numerous gaps; and Granite Mountain is a good section but again lacks evidence of an evolving sequence across the boundary.

For the Arrow Canyon Section, members expressed a desire to see greater emphasis placed on a sedimentological study of the beds in the vicinity of the boundary beds where it was considered by some that there were potential imperfections in the continuity of deposition. In the case of the Trough Springs Section, Dr. Webster informed us that there are more shales present and that with work on conodonts, foraminifera and carbonate sedimentology, it may well turn out to be the better of the two sections.

Sincere thanks are extended to Gary Webster for his time and effort he put in to making this excursion a highly successful venture.

FUTURE PLANS

Having identified within the Carboniferous six potential levels at which it may be possible to place intercontinental boundaries for series/stages, the Subcommission has resolved to pursue the following action:

1. Six projects will now be initiated by the appointment of project leaders who will be asked to investigate the levels identified in Provo as being of possible interest. These leaders will be asked to produce a report for the next Carboniferous Congress in Argentina (1991) setting out the diagnostic faunal/floral elements at their chosen level together with an assessment of the potential of that level for global correlation. The project leaders would be expected to gather around them a consultative group who can advise on possible sections which are worthy of further investigation.

- Project 1: A boundary at late Middle to early Late Tourmaisian (Upper Tn2-Lower Tn3) (Kinderhookian-Usage boundary).
- Project 2: A boundary at the Late Tourmaisian - Earliest Viséan (Tn3c-V1a) (Mid Osage).
- Project 3: A boundary at the Middle Late Viséan (V3b approx.) (late Meramecian).
- Project 4: A boundary at the base of G2; Brachiceras branneri Zone.
- Project 5: A boundary at the base of Fusulinella Beeclea occurrence (Atokan-Desmoinesian boundary; mid-Moscovian).
- Project 6: A boundary at the base of the Kasimovian; base of the Missourian; mid Cantabrian.

Any members willing to take part in a project either as a project leader, or as a member of the advisory group which each leader will form, should contact Paul Brenchle in respect of Projects 1 to 3; or Cor Winkler Prins for Projects 4 to 6. Correlation charts indicating the chosen levels are illustrated on the next two pages.

Specifications for Potential Sections

The following minimal aspects should be taken into account in the selection of potential boundary sections for the above projects:

- The chosen potential localities should be fully accessible without logistical or other restrictions.
- The section should be continuous (or composite).
- Faunal work should be completed or in progress; at least studies on evolving foraminifera, conodonts, ammonoids or spores (as appropriate) should be available.
- The chosen faunal succession should be based on specific first occurrences.
- Details of the geological setting, including tectonics and sedimentology need to have been documented or at least be under active investigation.

Reports on these projects will be presented for evaluation in Argentina and, if appropriate, short-term Working Groups will be formed to undertake an investigation of a short list of potential stratotype sections for each level.
Summary chart of biostratigraphic levels proposed for intercontinental correlation of the Lower Carboniferous (Mississippian) by P.L. Brenckle

Arrows indicate taxonomic appearances (evolutionary or otherwise) with the relatively more important events being shown in black. Stratigraphic intervals targeted for further study were chosen from those with the greatest number of more important events rather than just the total number of events.
<table>
<thead>
<tr>
<th>STAGES (North America)</th>
<th>HORIZONS (U.S.S.R.)</th>
<th>STAGES (Europe)</th>
<th>PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virgilian</td>
<td>Sokoljegorsky</td>
<td>Autunian</td>
<td>C-P Boundary</td>
</tr>
<tr>
<td></td>
<td>Noginsky</td>
<td>Stephanian C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pavlovo-Posadsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amerevsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rechitsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missourian</td>
<td>Yauzsky</td>
<td>Stephanian B</td>
<td>Project 6</td>
</tr>
<tr>
<td></td>
<td>Dorogomilovsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Khamovnichesky</td>
<td>Stephanian A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Krevyakinsky</td>
<td>(Barruelian)</td>
<td></td>
</tr>
<tr>
<td>Desmoinesian</td>
<td>Myachovsky</td>
<td>Cantabrian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podolsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atokan</td>
<td>Kashirsky</td>
<td>Westphalian D</td>
<td>Project 5</td>
</tr>
<tr>
<td></td>
<td>Tsninsky</td>
<td>Westphalian C</td>
<td>(Fusulina-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bolsovan)</td>
<td>Beedeina)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Westphalian B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Duckmantian)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Westphalian A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Langsettian)</td>
<td></td>
</tr>
<tr>
<td>Morrowan</td>
<td>Melekesky (Asatausky)</td>
<td></td>
<td>Project 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Br. branneri)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prikamsky (Askynbashsky)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severokeltmensky (Akavassy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Krasnopolyansky (Syuransky)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voznesensky (Bogdanovsky)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zapaltyubinsky</td>
<td>Yeadonian</td>
<td>Mid-Carb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marsdenian</td>
<td>Boundary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kinderscoutian</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alportian</td>
<td></td>
</tr>
</tbody>
</table>
7.0 XII INTERNATIONAL CARBONIFEROUS CONGRESS - BUENOS AIRES, 1991

by Dr. Sergio Archangelsky, URQUIZA 1132, Vincente Lopez (1638), Buenos Aires, Argentina.

CONGRESS PROGRAM
Planning is proceeding on schedule with some ten symposia being proposed for the Congress including:
- Late Palaeozoic Palynology (Playford, Owens, and Azcuy with the CIMP meeting)
- Palaeoclimates & Glaciation (O. Lopez Gamundi,...)
- Palaeomagnetism (J. Vilas, D. Tarling)
- Diastrophism and Tectonics (V. Ramos,...)
- Brachiopods (N. Sabbatini, C. Winkler Prins), and
- Palaeobotany & Palaeoecology (T. Taylor, R. Wagner)
There is also active correspondence on other subjects: Organic Material in Late Palaeozoic; Mineral Resources; IGCP Projects, etc. It is envisaged that as in previous congresses, about half will be devoted to symposia and the rest to Congress sections.

EXCURSIONS
Four pre- and post-Congress excursions (max.25 participants) are being organised: (1) Patagonia; (2) Sierras Australes of Buenos Aires; (3) Calingasta-Uspallata Basin; and (4) Pungano Basin. There is a possibility of a fifth as well as one post-Congress excursion in Bolivia and a short pre-Congress trip in Brazil.

RESPONSE TO THE FIRST CIRCULAR
Response has been slower than expected and if you are considering attending the Congress please forward the notice of intent which was enclosed with Newsletter 6. To cover the possible need for a replacement, a duplicate slip is enclosed for mailing to Argentina. Dr. Archangelsky reports that mail strikes in Argentina could well have caused the non-delivery of some preliminary registrations and has therefore provided the following list of names of those who have registered. If you expected your name to appear and it does not then please get in touch with Sergio as soon as possible. The list includes names received up to August 6, 1989. Additional opportunities to register will be provided at the SCSC Meeting (Provo, Utah); and the II Palaeobotanical European Conference (Madrid).

The Permanent Committee will meet in Buenos Aires, after the Provo Meeting, to finalise the program and it is expected that the SECOND CIRCULAR will be ready for distribution in January, 1990.

LIST OF PROVISIONAL REGISTRANTS (TO AUGUST 6, 1989)
BELGIUM: Bouckaert,J., Groessens,E., Pierart,P.
BOLIVIA: Merino Rovo,D., Sempere,T.
BRAZIL: Castro Paula,C.de, Fulfaro,V.J., Guimarães Sintões,M., Lavina,E.L., Pereira Finto,A.D., Perinotto J.A. de J., Rocha Campos,A.C., Rosler,O.
CHILE: Sepulveda,H.P.J.
CZECHOSLOVAKIA: Holub,V.M.
EGYPT: Abed,M., Kholief,M.M.
FRANCE: Broutin,J., Doubinger,J.M.T., Fournier-Vinas,C.
GERMANY (WEST): Belka,Z., Breitkreuz,C., Josten,K.H., Mosbrugger,V., Paprot,E., Wolf,M.
GERMANY (EAST): Schneider,J.
GREAT BRITAIN: Chaloner,W.G., Cowie,J.W., Richter,M.
HUNGARY: Kozur,H.
IRELAND: Gardiner,P.R.R.
ITALY: Griagnini,D.
JAPAN: Kato,M., Kimura,T., Nakamura,K., Nakazawa,K., Ozawa,T.
MALAYSIA: Metcalfe,I.
PERU: Allemann,V.
PORTUGAL: Oliveira,J.T., Lemos de Sousa,M.J.
SOUTH AFRICA: Visser,J.N.J.
SOUTH KOREA: Lee,C.Z.
SPAIN: Alvarez Ramis,M.C., Alvarez-Vazquez,C., Fernandez Marron,T., Wagner,R.H.
SWEDEN: Larsson,K.
UNITED ARAB EMIRATES: Alsharhan,A.S.
USSR: Babkina L.A., Bogomosov,Y.M., Chuvashov,B.I., Gurevich,A.B., Ivanova,P.M., Kolyar,G.V., Mogilev,A.E., Movsoovich,E.V., Novikov,V.P., Oshurkova,M.V., Salovskaja,V.D., Solovev,M.F., Vassilev,G.N.
8.0 WORKING GROUP REPORTS

8.1 WORKING GROUP ON THE DEVONIAN-CARBONIFEROUS BOUNDARY

The proposal of the La Serre section (Montagne Noire, south France) as the Global Stratotype Section and Point (GSSP) for the Devonian Carboniferous boundary has been sent by the Working Group on January 27, 1989 to the International Commission on Stratigraphy of IUGS for acceptance and ratification.

A "package" of sections was proposed by the "conclave" meeting of the Working Group in Ireland, May 1988 (see Newsletter 6: 22) namely:

- La Serre as the GSSP;
- Hasselbach (Germany) and Nanbiancun (China) for auxiliary boundary stratotypes.

In a postal ballot, this "package" was accepted by a 70% majority of the Titular Members. Since ICS concentrates only on GSSPs and is not concerned with auxiliary stratotypes, only the La Serre Section has been forwarded to ICS/ IUGS for formal approval. Auxiliary stratotypes lie within the competence of the Working Group and need no further confirmation.

After acceptance and ratification of the GSSP, publication of a final report with descriptions of the GSSP and auxiliary stratotypes will be prepared, including comments by both Titular Members and collaborating specialists.

The publication "Devonian-Carboniferous Boundary - Results of recent studies" Cour. Forsch.-Inst Senckenberg 100: 1-245, Frankfurt a.M. 2.5.1988 contains the following relevant papers

Paprotth, E. & Sevastopulo, G. The search for a strato-type for the base of the Carboniferous, 1-2.

Bless, M.J.M., Simakov, K.V. & Streele, M. Advantages and disadvantages of a conodont-based or event-stratigraphic Devonian-Carboniferous Boundary, 3-14.

Ziegler, W., Ji Qiang & Wang Chengyuan. Devonian-Carboniferous Boundary - Final candidates for a stratoype section, 15-20.

Flajs, G. & Feist, R. Index conodonts, trilobites and environment of the Devonian-Carboniferous Boundary beds at La Serre (Montagne Noire, France), 53-108.

Semenoff-Tian-Chansky, P. Corals from the Devonian-Carboniferous Boundary at La Serre (Montagne Noire, France), 129-138.

Vachard, D. Calcisereous microfossils (Algae, Pseudo-Algae and Foraminifera) from La Serre, Montagne Noire, France, 139-148.

Schönlaub, H.P., Feist, R. & Korn, D. The Devonian-Carboniferous Boundary at the section "Gröne Schneide" (Carmin Alps, Austria): A preliminary report, 149-168.

Becker, T. Ammonoids from the Devonian-Carboniferous Boundary in the Hasselbach Valley (Northern Rhenish Slate Mountains), 193-214.

Korn, D. On the stratigraphical occurrence of Cymaclymenia evoluta (H. Schmidt, 1924) at the type locality, 215-216.

Korn, D. & Thomas, E. Ammonoids from the Devonian-Carboniferous Boundary of A spar (Velbert Anticline, Northern Rhenish Massif), 219-220.

Weissbrod, T. & Gvirtzman, G. The Late Devonian event in the Near East, 221-234.

Weyant, M. Relationship between Devonian and Carboniferous strata near the northern confines of the Bechar basin, Algeria, 235-245.
8.2 WORKING GROUP ON THE MID-CARBONIFEROUS BOUNDARY

by H.R. Lane, Amoco Production Co. USA, 501 Westlake Park Blvd, Rm 16.162, Houston, Texas 77079, USA and A.C. Higgins, BP Research, Chertsey Road, Sunbury on Thames, Middlesex, TW16 7LN, UK

On the invitation of the USSR National Committee of Geologists, the Working Group held a meeting in Kiev which was organised by the Institute of Geological Sciences of the Ukrainian Academy of Sciences and the Ukrainian Coordinating Department for Geology.

The primary objective was to visit potential stratotype sections in the Donetz Basin. The program was as follows:

- Sept.17 - Arrival in Kiev.
- Sept.18 - Welcome to the meeting and workshop at the Institute attended by Soviet and western specialists.
- Sept.19-22 - Field meeting in Donetsk.
- Sept.23 - Final meeting at the Institute, Kiev.

The meeting was extremely well organised and very productive. The workshop sessions allowed Soviet and western specialists to compare faunas and at least to appreciate the difficulties of interpretation. The field meeting was also successful with the participants joining in the excavation of a trench to expose a particularly crucial part of the section. Joint samples, for conodont, foraminifer and palynological study, were taken both from the trench and the outcrop sections.

A meeting of the Working Group produced a set of recommendations which would allow the Soviet geologists to improve the sections. Thanks were expressed on behalf of the Working Group to the Chairman of the USSR National Committee of Geologists, the Director of the Institute of Geological Sciences of the Ukrainian Academy of Sciences, and the staff of the Institute who ran the meeting, for the organisation of a very successful meeting.

Those attending included:
- Igor Barskov, Moscow State University, USSR
- Tatiana Belskaya, Moscow Palaeont. Inst., Acad. Sci., USSR
- P.L. Brencle, Amoco Research Centre, Tulsa, OK, USA
- Niljinder Gilshman, Moscow Oil & Gas Inst., USSR
- Eric Groessens, Geol. Surv., Bruxelles, Belgium
- Alan Higgins, BP Research Centre, Sunbury on Thames, UK
- Rimma Ivanova, Sverdlovsk, Inst. Geol. & Geochem., Acad. Sci., USSR
- Maslo A. Kier, USSR
- Zoja Kossenko, Donbasgeoelkogoria Production, USSR
- Helena Kulagina, Geol. Inst. Bashkirian Centre, Urals Branch, Acad. of Sciences, Ufa, USSR
- R.H. Lane, Amoco Production Co., Houston Texas, USA
- Maria Makheina, Moscow Geol. Surv. & Geol. Centre, USSR
- Walter L. Manger, University of Arkansas, USA
- Natasha Maslo, Kiev Inst. Geol. Sciences, USSR
- Tamara Nemirovskaya, Kiev Inst. Geology, USSR
- Tsykader Nigmatzhannov, Tashkent, USSR
- Zincox Olyezuul, USSR
- Olga Ozlova, Tashkent Inst. Geol. & Geophys., Acad. Sci., USSR
- Eva Paproth, Geol. Landesamt. Nordrhr.-Westfalen, Krefeld, W. Germany
- Vladimir Pauzechkin, Geol. Inst. Bashkirian Centre, Urals Branch, Acad. Sciences, Ufa, USSR
- W.H.C. Ramsbottom, University of Sheffield, UK
- Ruan Yipin, Nanjing Inst. Geol. & Palaeont., Acad. Sinica, China
- Oleg Scherbakov, Perm Institute, USSR
- Betty Skipp, USGS, Denver, USA
- W. John Varker, University of Leeds, England
- Tatjana Vorontsova, Moscow State University, USSR
- Gary Webster, Washington State University, USA
- Yang Jingzi, Nanjing Inst. Palaeont. & Geol., Acad. Sciences, China
- Alla Ystchenko, Kiev Inst. Geol. Sciences, USSR

A formal meeting of the Working Group was held in Donetsk and later in Kiev. The following Voting Members were in attendance: H.R. Lane (Chairman), A.C. Higgins (Secretary), P. Brencle, O.L. Emor, W. Manger, T. Nemirovskaya, Ruan Yipin, W.H.C. Ramsbottom, B.J. Skipp, Yang Jingzi. Chairman Lane opened the Kiev meeting by outlining the functions of the Working Group, reading the ratified proposal for a mid-Carboniferous Boundary. The previously examined potential stratotype candidates at Stonehead Beck, UK, and the Jingyuan section, China were briefly described by W.H.C. Ramsbottom and H.R. Lane respectively. H.R. Lane remarked that the detailed description and fossil group coverage given for the Stonehead Beck Section was a good model for other stratotype candidates.

The report of the Working Group’s conclusions and recommendations on the Donetz Basin stratotype candidate was then given.

The Working Group appreciates the amount of work which has been done to present these sections as a mid-Carboniferous Boundary stratotype candidate. We agree with our Soviet colleagues that the boundary lies between D lower and D upper and consider that these are important sections meriting further study. With that in mind, we present the following recommendations:

1. The precise position of the boundary needs confirmation in one or more continuously exposed, excavated and well sampled sections.

2. Confirmation by more detailed studies is needed of the correlation between the two sections Zhelvakovaya Valley and Bezymyannaya Valley.

3. Detailed examination at closely sampled intervals is needed from the base of D lower to the top of D upper, including the use of newly devised techniques for the extraction of fossils from shales, of the conodont, foraminifer, palynomorph, plant megafossil, ammonoid, brachiopod, crinoid and ostracod distribution.

4. The significance of the sandstone units near the mid-Carboniferous Boundary needs to be assessed sedimentologically. A detailed study between D lower and D upper is needed.
5. It was recommended that the work should be completed by 1991, before the 12th International Carboniferous Congress in Argentina.

A unanimous vote to accept these recommendations was taken.

Discussion:

1. Professor Einar suggested that the presence of foraminifera in the Belgian Namurian allowed easier correlation with the USSR than with the UK. Would the Belgian sequence be a more useful succession for comparison? Eric Groesens (Belgium) stated that the foraminifera in Belgium were not present as a continuous record and that a good stratotype section did not exist at this level in the Belgian Namurian.

2. Professor Einar stated that the efforts of the Working Group were very useful but wished to suggest a different direction for progress. In the Tethyan realm, foraminifera provided the main means of correlation and can be used to recognize the mid-Carboniferous Boundary. Foraminifera will provide the major means of correlating between the USA and USSR but more work needs to be done on faunas from the USA. Paul Brenchley replied that the foraminiferal faunas of the USSR needed to be related to the proposed boundary because this was not the boundary between the currently defined Lower/Middle Carboniferous of the USSR. He suggested that the next step was to combine the faunas from the USA and USSR to pinpoint the similarities and differences. However, he felt it was up to the Soviet geologists to propose species which could be used to recognize the proposed mid-Carboniferous Boundary.

Future Plans:

1. 1989 (Sept 24-30) SCCS Meeting in Provo, Utah, visiting sections in Utah and Nevada.
3. 1992? South China, Guichau Province.

8.3 WORKING GROUP ON THE MIDDLE PENNSYLVANIAN OF NORTH AMERICA

by P.K. Sutherland, School of Geology & Geophysics, University of Oklahoma, Norman OK 73019, USA.

The Middle Pennsylvania Working Group has now been in existence for five years, having been organized in September, 1984. The Working Group has met each year at the Annual Meeting of the Geological Society of America.

Goals have been from the beginning to foster research work of all kinds on the stratigraphy and biostratigraphy of Atokan and Desmoinesian strata in North America. In addition, we have worked towards the selection of boundary stratotypes, anywhere in North America, for the Morrowan-Atokan, Atokan-Desmoinesian and Desmoinesian-Missourian boundaries. As a part of this latter goal, members of the Working Group have taken part in field trips to examine Pennsylvanian sequences in such varied areas as Arrow Canyon in southern Nevada, the type Morrowan area in northwestern Arkansas, the type Atokan area in southeastern Oklahoma and the type Desmoinesian area in Iowa.

The intentions of the Working Group are to work towards the preparation of specific proposals for formal boundary stratotypes for the above listed boundaries, to be forwarded to the Carboniferous Subcommission.

The Working Group was diverted from the above listed goals concerning boundary stratotypes by new directions taken by the Carboniferous Subcommission at its meeting in Beijing, China in August 1987. The item in question was the request for recommendations of possible biostratigraphic horizons in the Upper Carboniferous that might be recognizable in other parts of the world. The main discussions by the Working Group at its meetings in November 1987 and in November 1988 were concerned with this question. In February 1989, on behalf of the Working Group, I sent to Cor Winkler Prins, Chairman of the committee gathering information on Upper Carboniferous, a list of three horizons within the Pennsylvanian of North America that we believe have potential international significance. Those horizons are as follows:

1. Lowest occurrence of Brannoceras, Idiognathodus and Pseudostaffella (within the Morrowan).
2. Lowest occurrence of Beedeina (=Fusulina)(=base of Desmoinesian).
3. Desmoinesian - Missourian boundary; somewhat below lowest occurrence of Tricities; at highest occurrence of Beedeina, Mesolobus, Neognathodus and Gonioglyphoceras.

On a separate matter, seven members of the Working Group, with Dr. Walter Nassichuk, Director of the Institute of Sedimentary and Petroleum Geology in Calgary, as leader, will spend nine days in July 1990 on northern Ellesmere Island, in the Canadian Arctic, examining the spectacular exposures of Lower and Middle Pennsylvania strata. Many of the rocks are highly fossiliferous. The main emphasis will be on the examination of Middle Pennsylvania reefs and Pennsylvanian carbonate-evaporite relations.

Members of the Middle Pennsylvania Working Group:
- Dr. P.K. Sutherland, Univ. Oklahoma, Norman Oklahoma (Chairman)
- Mr. D.R. Boardman, Texas Tech. Univ., Lubbock, Texas
- Dr. R.C. Douglass, U.S. Geol. Survey, Washington DC
- Dr. R.C. Grayson Jr, Baylor Univ., Waco, Texas
- Dr. J.R. Groves, Amoco Prod. Co., Denver, Colorado
- Dr. P.H. Heckel, Univ. Iowa, Iowa City, Iowa
- Dr. T.W. Henry, U.S. Geol. Survey, Denver, Colorado
- Dr. R.L. Langenheim Jr, University, Urbana, Illinois
- Dr. W.L. Manger, University, Fayetteville, Arkansas
- Dr. W.W. Nassichuk, Geol. Survey, Calgary, Alberta, Canada
- Dr. R.A. Peppers, State Geol. Survey, Champaign, Illinois
- Dr. G.D. Webster, Washington State Univ., Pullman, Washington
8.4 WORKING GROUP ON THE UPPER PENNSYLVANIAN

by Robert Kosanke, U.S. Geological Survey, Denver Federal Center, Bldg 25, Box 25046 M.S.919, Denver, CO 80225, USA

Dr. Kosanke reports that three separate palynological studies of the proposed Pennsylvanian System stratotype in West Virginia and Virginia have been published as USGS Professional Papers 1455 (Middle Pennsylvanian), 1479 (Lower Pennsylvanian) and 1486 (Upper Pennsylvanian).

8.5 WORKING GROUP ON CARBONIFEROUS STUDIES IN CHINA

by Prof. Yang Shipu, China University of Geosciences, Chengfu Road, Beijing 100083, Peoples Republic of China.

1. "The study of Early Carboniferous Stratigraphy and Brachiopods (esp. on the study of gigantoproductidae from Viséan to Early Namurian) from Western Qilanshan, Gansu, Northwestern China" was completed in May 1989 in a Masters Thesis by Mr. Li Daqing under the supervision of Professor Yang Shipu.

2. A study of Early Carboniferous Community Paleocology from Southern Guizhou, China has been completed by Mr. Zhang Jianping (PhD dissertation supervised by Professor Yang Shipu). The Carboniferous System, with abundant benthic assemblages and various lithofacies, is extremely well developed in the southern Guizhou. Based on rich field collections and previous studies, an analysis has been made of the distribution and changing patterns of these Early Carboniferous communities. Environmental reconstructions have been made in terms of community paleoecology (including autoecological studies, taphonomy, trophic analysis, sedimentological studies, organism-organism and organism-sediment relationships).

3. The group has commenced work on the compilation of a book entitled "Carboniferous System of China", in which will be included type sections, a fossil atlas, and other features. The work is expected to be completed in three years.

4. Current studies are underway on Carboniferous brachiopods from Western Yunnan, Eastern Tibet.

8.6 CARBONIFEROUS GEOLOGY AND PALEONTOLOGY OF BRAZIL

by A.C. Rocha-Campos, Instituto de Geociências, University of São Paulo, São Paulo, Brazil.

Carboniferous Conodonts. Carboniferous sediments of the Amazon (Lower - Middle) and Solimões (Upper Amazon) Basins in northern Brazil have been investigated by Lemos (in press) for their conodont faunas. Carboniferous beds in the two basins encompassing the Monte Alegre, Itaituba and Nova Olinda and equivalent formations record transgression and regression cycles with evidence of increasing aridity towards the end of the interval.

Relatively well diversified conodont faunas have been obtained from subsurface samples of carbonate rocks of 19 wells drilled in the Amazon and Solimões basins by Petrobrás (Brazilian State Oil Agency) belonging to sequences starting with widespread transgressive shales, followed up by carbonates and/or evaporites, mainly anhydrite and halite. The shales are generally radioactive, providing very useful stratigraphic markers. More abundant conodont assemblages have their occurrence associated with well developed shale sections during the Morroban and Atokan characterised respectively by Rachistognathus muricatus, Neognathodus symmetricus, Neognathodus bassteri and Adeognathus laulus, and Diplognathodus coloradoensis and Diplognathodus orphanus.

Conodonts become scarce at the end of the Atokan in response to the accentuation of the arid conditions. Marine transgressions are less frequent in the Late Carboniferous associated with a progressive isolation and stabilisation of the basins.

CAI of Carboniferous Conodonts. The Color Alteration Index (CAI) was determined on conodonts of the Monte Alegre, Itaituba and Nova Olinda (Pennsylvanian) from 18 subsurface and outcrop samples from the Amazon Basin (Middle-Lower Amazon) and the Solimões Basin (=Upper Amazon), Northern Brazil (Rocha-Campos et al., 1988).

A generalised CAI map obtained shows values varying from 1 to >5 increasing from the margins towards the center of the basins. Corresponding isograds are in general concordant with isopachs of overburden except locally, but this seems inadequate to account entirely for thermal levels indicated by the CAI values.

The divergence may be explained either by the present deficiency in thickness due to erosion or, more probably, by heating associated with the emplacement of Mesozoic intrusives. A wide range of CAI values within a sample or along a section due to the proximity of basic intrusives could also be demonstrated.

Distribution of CAI values is consistent with known occurrences of gas and/or oil in the Paleozoic section of the Amazon Basin.
Carboniferous of the Solimões Basin, Northern Brazil. Recent discovery of gas and oil in Carboniferous sandstones of the Juruá (late Devonian - early Carboniferous) (= Monte Alegre Formation in the Middle-Lower Amazon Basin, pro parte) and Carauari (= Itaituba and Nova Olinda Formations) has stimulated research on the paleontology, stratigraphy and facies of the formations. The following summary is based mostly on recent papers by Apoluceno Neto & Tsuchone, 1988, Silva (1988) and Cunha et al. (1988).

The Brazilian Paleozoic basins (Amazonas, Parnaiba and Paraná) occupy more than three million square kilometers and have challenged the oil explorationists of Petrobrás throughout the decades. Among them, the Amazonas Basin is highlighted due to its size (>1.2 million square kilometers) and physiographic peculiarities (rivers and forests). This large sedimentary area may be, from the geologic viewpoint, subdivided into two sub-basins: the Solimões and Amazonas (Middle and Lower) Basins, separated by a prominent positive feature, the Purus arch. As far as the tectonic-sedimentary evolution is concerned, the Solimões Basin shows notable differences when compared with the Amazonas Basin, mainly in structural aspects. In the Jurassic and Early Cretaceous time, the Solimões Basin was affected by a strong compressional tectonism which generated a series of NE-SW oriented thrust fault trends, with associated "en échelon" structures which have been excellent oil exploration guides.

The systematic exploration effort for petroleum and natural gas has been underway since the early 1970s, encouraged by both logistic facilities (helicopter-transported drilling rigs and support seismic crews) and excellent quality seismic data. This huge effort led to the Juruá gas-field discovery in 1978, and in 1986, to the Uruçu River oil-field discovery, which constitutes the first commercial oil discovery within Brazilian Paleozoic basins.

The stratigraphic framework of the Solimões Basin was controlled by three tectono-morphological features: the Juruá Sub-basin, the Carauari High and the Jandiatuba Sub-basin. The marine ingression and coastal onlaps occurred in a west-to-east sense. The Paleozoic sedimentary section may be divided into three major depositional sequences with eight fundamental units:

Sequence I: Benjamin Constant Formation (Ordovician).

Sequence II: Jandiatuba Formation, Biá Formation, Uerê Formation, Jarauqui Formation (Devonian).

Sequence III: Juruá Formation, Carauari Formation and Fonte Boa Formation (Upper Devonian and Carboniferous - Permian).

The main reservoirs in the rio Uruçu area lie in the lower portion of the Carauari Formation (Pennsylvanian) and in the upper portion of the Juruá Formation (Devonian - Early Carboniferous).

The sandstone reservoirs in the rio Uruçu area are classified as subarkose and sublithocarenite, composed of quartz (72-90%), feldspar (6%-18%), and rock fragments (1%-4%), cemented mainly by anhydrite, calcite, and dolomite. Secondary deposits include clay minerals, quartz overgrowth and pyrite.

Primary porosity was almost entirely damaged by early and late diagenetic cementation. Secondary porosity depends on the cementing process distribution (diagenetic history), composition of the rock framework, and grain size. The porosity is essentially secondary in origin, due to the dissolution of the anhydrite and dolomitic cements, feldspars and chert. Organic acids performed an important role in generating secondary porosity.

Paleoenvironmental analyses followed by the identification of at least five sedimentary facies: aeolian dune, sand sheet, interdune, sand-wave, and shoreface deposits. The best reservoirs are found in the aeolian dune facies.

9.0 I.G.C.P PROJECT REPORTS

by Arturo J. Amos, HIDRENED, Esmeralda 320 2 piso, Buenos Aires, Argentina and Sergio Archangelsky, URQUIZA 1132, Vincente Lopez (1638), Buenos Aires, Argentina.

Description

1. Paleoearthography. Delimit the northern margins of Gondwana and Southern South America (Patagonia).

2. Paleoclimatology. During the Late Paleozoic South America had a wide period of glaciation in several parts. The apparent polar wandering curve must be confirmed with other evidences, as faunal and floral diversities.

3. Paleomagnetism. Comparison of data for Paleozoic sequences from Patagonia and the shield areas to explain some anomalous floral and faunal distributions.

4. Tectonics. Emphasis on the deformation events with the correlated magmatism studied from a multidisciplinary point of view, with types and recurrence of magmatic events, including geochronology. The evolution of the Late Paleozoic basins of South America, within a geotectonic framework has been included, plus the paleontological, magmatic and tectonic events at the southwest margin of Gondwana.

Summary of achievements.

During the last six years intensive research has been carried out in several Late Paleozoic basins of South America. This subcontinent is now subdivided latitudinally in three main areas, viz. Tehtyan (in the north), Gondwana (in the middle) and Patagonia (the southern appendix). On the other hand, to the west is the Andean area and to the east the intracratonic area. Studies were mainly concentrated on biostratigraphy and correlations in Project 42, while tectonic, magmatic and paleogeographical aspects are being developed in Project 211, along with new researches in biostratigraphy.

Tehtyan area. Recent advances have been made in the Garzon Massif, Oriental Cordillera of Colombia, where several sections 600 m (or more) thick yielded a marine Carboniferous fauna (now under study) and plant fragments (Mojica et al., 1985). The early Permian may be represented in one of the sections. Also in the Oriental Cordillera, fossil ostracods (Welleria) and plants (Psilophyton, Ginkgophyton) have been found in Cuche Fm. (Mojica & Villarol, 1984), suggesting a mid Devonian to early Carboniferous age. All stratigraphical data from this area (Venezuela, Colombia, Ecuador and northern Brazil were recently summarized (Rocha Campos & Archangelsky, 1985) showing the presence of rich Carboniferous to early Permian warm water faunas, composed of about 130 species, and floral assemblages of late Carboniferous and early Permian age from Venezuela, of undoubted Amerosorian affinity. Some advances were made in northern Brazil where at least six basins are known to occur, viz. Amazon, Alto Tapajos, Paranaiba, Jatobá and Sergipe-Alagoas (also Bahia, Matto Grosso and Rondônia areas). Previous stratigraphic schemes remain, being based on marine faunas, plant megafossils and paly- nomorphs (Corrêa da Silva, 1986).

Central Andean area. A long basin stretches from Perú in the north to northern Argentina in the south, crossing Bolivia. In Perú, stratigraphic studies have been recently summarized (Cadena Amerian, 1985, V. Alleman, 1985). Litho- and biostratigraphy of the Carboniferous Ambo and Tarma Groups, and the Permian Copacabana and Mitu Groups are now better understood. Plant assemblages (mega and microfossils) seem to show close relations with the Gondwana area of South America, though doubts still exist about the precise chronology of the lower part of the sequences (Ambo Group) that may be either late lower Carboniferous or middle Carboniferous. The floristic assemblage of the Ambo Group has several common taxa with the NGB (Nothracopetris-Borrysthopsis-Ginkgophyllum) Zone of Argentina, dated in the middle to upper Carboniferous. A new stratigraphic scheme for Bolivian formations has been presented, including marine and continental biozones (Suárez Soruco, 1986). Palynozone and plant megafossil associations characterize the lower and early middle Carboniferous. However, Nothracopetris szajnochii, reported from Kasa Fm. (Azcuzy & Suárez Soruco, 1984), suggests a slightly younger age. A gap seems to exist during part of the middle Carboniferous. Pollen zones Poiotiscopories-Ancistrospora-Florinites and the marine invertebrate Lepepaltula levigata Wenz are found in southeastern Cordillera (Mandiy-Ui and Machareti Groups). Similar pollen assemblages were reported in northern Argentina (Azcuzy & Lafitte, 1981). The finding of conodonts in the Copacabana Group allowed a detailed zonation. At the base the late Carboniferous Idiognathodus ellisoni - Sreptonathodes elonatus assemblages are equivalent to the fusulinid Triasictites nitens Zone. Neognonelloa bixelli - Sreptonathodes whitei and Neosrptonathodes pegourensis - Sreptonathodes behnikeyi conodont assemblages are of early Permian age, correlated respectively with the fusulinid zones Pseudoschwagerina texana and Eophorophylus gracilis.

Gondwana Southern Andean area. It has been intensively surveyed. The Huentelaquén Formation in Chile (31-32° S) yielded foraminifera (Tetrataxis, Eorlandinies, Eoschuberiella etc.), brachiopoda, bivalvia and plant fragments, suggesting a late Carboniferous to early Permian age (Nasi & Sepúlveda, 1986). In northern Chile marine sequences with invertebrates have been recently discovered, being comparable to early Permian deposits from the Argentine Puna.

In Argentina, detailed studies have been carried out in the Paganzo, Rio Blanco, Calingasta-Uspallata and San Rafael basins (Archangelsky et al., 1985). Correlations between marine and continental deposits were advanced on the basis of newly proposed biozonations. Marine biozones include the Protocaninales fauna (lower Carboniferous), and after a hiatus the Lepepaltula Zone (middle Carboniferous), the Intermediate and Cancrinella Zones (late Carboniferous to early Permian). Paleobotanical zones are: Archaeosigillaria (lower Carboniferous), the Lepidodendropsis flora and NGB

Carboniferous Newsletter
of the Argentine Cordillera Frontal. Sandy limestones and limestones of an intra-arc zone are part of this belt. The petrotectonic association of the coastal and intermediate domains of Chile can be interpreted as a subduction complex accreted to the Pacific border of Gondwana during the Late Paleozoic (Parada and Hervé, 1985).

Intrusive igneous rocks to the north, in Peru, are large bodies of granitic rocks of 260 to 238 m.y., according to Rocha Campos et al. (1978) and Lancelot et al. (1978). Ryholites, dacites and andesites in the Miút Formation of the Cordillera Oriental of Peru to Northern Bolivia, are perhaps middle Permain to lower Triassic (Alleman, 1985). In Colombia, granodiorites and andesites intrude Late Paleozoic to Triassic rocks (Saldaña Formation), perhaps corresponding to a late magmatic phase producing contact metamorphism (Mojica et al., 1985).

From paleomagnetic data the position of South America during the Late Paleozoic is now better determined as suggested by Valencio, Vilas and Oviedo. From Tournaisian to Viséan, South America moved from about present latitudes toward higher ones; in late Viséan, southern Africa was near the South Pole, and then Gondwana moved to lower latitudes so that South America was situated in latitudes similar to the present. Climate, therefore, changed progressively from cold to warmer.

Further ideas concerning probable allochthonous terrains and the southwest margin of Gondwana have had strong support from various lines of research.

Plans for future investigations.

Biosstratigraphic work has to be developed in several critical areas, where fossils have only been mentioned but never described. Old schemes have to be revised. This situation is true for most of the Tethyan area and the ecolonal region of Gondwana. Here, taxonomy is better known, though improvement in biozonations, both in marine and continental sequences are needed. A strong effort has to be made with the Patagonian faunas and floras that seem to be somewhat different from traditionally known biota in other areas of South America.

New paleomagnetic evidences are needed in critical areas to confirm the nature of probably mobile plates that existed around the southern margin of South America. In this context, studies on the intensive magmatic activities that characterize parts of the central and southern Andes have to be developed in order to understand the different phases, their precise chronology and bearing on the plate tectonics.

References

9.2 PROJECT 211: LATE PALEozoIC OF SOUTH AMERICA - REPORT OF 5th MEETING IN CHILE

by S. Archangelsky, URQUIZA 1132, Vincente Lopez (1638), Buenos Aires, Argentina.

Date: August 11, 1988
Place: Santiago de Chile, CHILE (V Congreso Geológico Chileno)

Scope of Meeting: This 5th meeting of the Working Group, organized by the Chilean representative of the 211 Project (Dr. Patricio Sepulveda), was devoted to a discussion of paleogeographic aspects (and related tectonics - magmatism) of SW South America and related biostratigraphic aspects, in order to achieve a better chronological precision of events. A brief administrative section with a report on the Project achievements was also on the agenda.

Achievements of Meeting: Six talks on paleogeography, paleomagnetism and magmatism-tectonics in Chile, NW - W Argentina, Patagonia and Antarctica were presented by specialists from Chile, USA and Argentina. After each talk there were discussions, partly centered on the probable allochthonous terrains and the SW margin of Gondwana. Paleontological data were also included in the discussion. Two talks on regional geology of Chile and Colombia and a new biostratigraphic scheme for the marine sequences in Argentina were also presented. The meeting was attended by 20 participants from Chile, Argentina, Colombia, Bolivia, France, USA and Germany who actively participated in the discussions. The meeting lasted four hours, with ten minutes being devoted to an administrative report by the co-leader (S. Archangelsky).

Outcome of Meeting. Abstracts of presentations will be published together with the contributions for the next meeting (Belem do Pará, Brazil, November 1988).

Other data. The Meeting was presided by S. Archangelsky (co-leader of Project 211) and the Chilean delegates, Patricio Sepulveda and Humberto Padilla. The co-leader gave a brief report that included the IGCP Board considerations about the Project, cooperation with IGCP Projects 237 and 272, organization of the next XII International Congress on the Carboniferous - Permian Stratigraphy and Geology (Buenos Aires, 1991), and the next meeting to be held in Belem do Pará, Brazil.

The next block was devoted to the SW Pacific margin of Gondwana, during the Late Paleozoic, regional geology and biostratigraphy in the following order:

- J. Davidson: Devonian, Carboniferous and Permian of northern Chile. Present knowledge about the paleogeography.
- C. Mpodzis: Neopaleozoic magmatism in Chile.
- R. Forsythe: Paleomagnetic constraints of the Late Paleozoic in Chile.
- J. Vilas: Late Paleozoic geodynamic evolution of the Southern Andes on the basis of paleomagnetic studies.
- H. Padilla: The Late Paleozoic sedimentation in the Sierra de Vares, Cordillera de Domeyko.
- C. González: Late Paleozoic biochronology of marine strata in the Argentine Pre-cordillera.
- J. Mojica: Late Paleozoic geology of Colombia.

Apart from the speakers, the following people attended the meeting: E. Morel, D. Gauza, C. Rajela, N. Ramos from Argentina, V. Covacevich from Chile, T. Sempré from Bolivia, R. Marocco from France and C. Brückreutz from Germany.

9.3 PROJECT 211: LATE PALEozoIC OF SOUTH AMERICA - REPORT OF 6th MEETING IN BRAZIL

by S. Archangelsky, URQUIZA 1132, Vincente Lopez (1638), Buenos Aires, Argentina.

Date: November 8, 1988.
Place: Belem do Pará, BRAZIL

Scope of Meeting: The 6th meeting of the Working Group, organized by Dr. Zuleika C. Corrêa da Silva and Dr. Marteni M. Toigo (National Leaders of the Brazilian Working Group of Project 211) took place at the Centro de Convenções. The meeting was mainly devoted to stratigraphic, coal and uranium problems.

Achievements of Meeting: Papers concerning the stratigraphy of Argentina, Brazil and Peru, coal geochemistry of Brazil and finally Argentine uranium deposits during the Late Paleozoic were presented. The meeting was very fruitful due to the participation of Brazilian, Equatorian and Peruvian delegates. The importance of the restudy of the classical Paracas coal-bearing area in Peru was demonstrated in the revision of the palaeoflora performed by V. Alleman. These assemblages, located in ecotonal areas between Gondwanan and equatorial paleofloras, show warm-temperate conditions. Another important contribution was a diagnosis of the Late Paleozoic uranium deposits of Argentina presented by S.A. Gorustovich. The geochemical studies of Gondwanan coals in the Parana Basin of Brazil, using modern techniques are showing important differences with the components that characterize equatorial coals; this new line of investigation is directly related to economic considerations in regard to the coals of other Gondwanan components. Finally, a new palynological biozonation for the Permian, responding to the Code rules was proposed for the southern area of the Brazilian Paraná Basin by M.M. Toigo.

Outcome of Meeting: During both administrative and scientific sessions, the possibility of a Workshop at the site of Paracas (Peru) was recommended. This meeting will take place next year. However, as field conditions due to political
problems in Perú are difficult to overcome, a second alternative was suggested: a field meeting in Loja, Ecuador, during the 2nd Geological Congress organized by the Colegio de Geólogos (November 14-18, 1989).

The program for the scientific sessions at Belen do Pará contained the following:

M. Zamora: Los terrenos magmáticos tectonicos del Paleozoico Superior de Ecuador.

S. A. Gorustovich: Depósitos uraníferos del Neopaleozoico de Argentina.

V. Allemann: Advance report of the Paracas Carboniferous paleofloristic studies in the Southern Coast of Peru.

M. M. Toffo: Paleynobiostratigraphy of the South Brazilian Neopaleozoic Senonian sequence.

Z. C. Corrêa da Silva: (a) The rank evolution of South Brazilian Gondwanic coals on the base of different chemical and physical parameters, (b) The formation of coal deposits in South Brazil.

Z. C. Corrêa da Silva et al.: (a) The problem of rank determination of some southern Brazilian coal seams, (b) Petrografia das frases de beneficimiento dos carves da Jazida do Faxinal, RGS, Brazil.

Other data. Abstracts of the papers presented at both the Chile and Brazil meetings will be published in December 1988 in the usual form, for distribution to the members of the IGCP 211 Project and several other interested scientists. It should be noted that research conducted with-in this Project is directly related to the XII International Congress on the Carboniferous and Permian Stratigraphy and Geology to be held in Buenos Aires, Argentina, in September 1991.

9.4 PROJECT 272 - LATE PALAEOZOIC AND EARLY MESOZOIC CIRCUM-PACIFIC EVENTS

by J. M. Dickins, Project Leader, Bureau of Mineral Resources, P.O. Box 378, Canberra, A.C.T. 2601, Australia.

Scope of Project. In view of the possible wide scope of this project, and taking into account that the project has followed on from IGCP 203 Permo-Triassic Events of the Eastern Tethys, some brief planning comments follow on how it is intended to obtain practical, creative results within the limits of the time and resources available.

Further work on the Permo-Triassic boundary is clearly desirable, particularly in connection with establishing a boundary stratotype, but since this matter is not likely to be resolved shortly, more specific targets have been set on the tectonic and magmatic-volcanic activity which is connected with the boundary.

Other striking boundaries already reflected in the traditional World Stratigraphic Scale are the Carboniferous-Permian Boundary, the mid-Permian Boundary and the lower bound-
daries of the Middle and Upper Triassic. All these boundaries are associated with widespread regressive-transgressive events and important tectonic and, in some or perhaps all cases, magmatic events. To obtain more extensive and reliable information on these events would offer a framework for understanding associated mineral development as well as geochemical changes in the sea, on the land and in the atmosphere. Possibly geomagnetic changes are also related.

Although study of events at other times are not precluded, concentration on these major events is warranted. Precise information, for example, is lagging behind the data available on the scope and nature of the events associated with the beginning of the Middle and Upper Triassic. Even if the Project allows some advance on this alone, it will have served a very useful purpose.

Overall study of the climate of the Permian and Triassic is meagre, and the integration of climatic work with other information from the Project could prove most interesting.

Meeting Schedule.

1). A business and organizational meeting will have been held in association with the IGC in Washington, D.C. in July 1989 by the time this Newsletter is published.

2). A scientific meeting will be held at the University of Newcastle, NSW, Australia on Friday, February 2, 1990 preceded by a three day field trip to examine Carboniferous, Permian and Triassic sections in the northern Sydney Basin and the southern part of the New England Fold Belt. Costs are not expected to exceed A$400, including six nights accommodation.

3). Immediately following, a meeting will be held at the University of Otago, Dunedin, New Zealand in association with the 2nd International Brachiopod Congress (February 5-9, 1990). The meeting will be held on the evening of Friday, February 9 and on the morning of Saturday, February 10, followed by participation in the Southland Excursion which will leave in mid-afternoon. For this New Zealand part it will be necessary to register DIRECTLY with the 2nd International Brachiopod Congress as soon as possible.

The Australian meeting will concentrate on the Carboniferous and Permian, and the New Zealand session on the Triassic although the program will not be mutually exclusive.

4). An invitation has been accepted to hold a meeting in association with the XII International Congress on Carboniferous-Permian Stratigraphy and Geology, Buenos Aires, Argentina, September 22-27, 1991. Preparations are also underway to hold meetings on the NW and NE Pacific and Professor Giuseppe Cassignis has invited the Project to hold a meeting in Italy. These activities offer the likelihood of a busy program before the Project is due to finish at the end of 1992. Comments on these plans and the program are invited and should be sent directly to the Project Leader.
10.1 AUSTRALIAN STUDIES

10.1.1 POSSIBLE YOUNGER CARBONIFEROUS ROCKS AND FAUNAS IN EASTERN AUSTRALIA

by J.B. Waterhouse, Department of Geology & Mineralogy, University of Queensland, St Lucia 4067, Australia.

The youngest fauna of indisputable age in eastern Australia is the widespread *Levipustula levis* fauna; some stratigraphic distance higher, there occurs a prodigious dominated complex of faunas, with genera regarded as typically Permian, such as *Echinolasia*, *Costatumula*, *Magniplacatina*, and *Terraeca*, accompanied by Gondwana bivalves such as *Eurydesma*, *Deltopsecten*, *Etheripsecten* and *Vacuella*. The *Levipustula* fauna is no older than Bashkirian, the Permian fauna no older than Sakmarian. Waterhouse (1987, 1988) has argued that the intervening faunas, found for example in the Rands-Burnett beds of the Yarrol Basin, and the Fairland-Dresden beds of the southeastern Bowen Basin, are mostly Late Carboniferous, based on affinities with Siberian brachiopods, and bryozoans (Engel, 1975). The intervening faunas are, with meagre exceptions, mostly of "Permian" aspect, and so are readily confused with later Permian forms. A similar arrangement is found in the Northern Hemisphere, where Late Carboniferous faunas, especially amongst brachiopods and bivalvia, are difficult to distinguish from basai Permian (Asselian, Sakmarian) faunas. The actual Carboniferous-Permian boundary placement depends very much on how the World Permian is defined. Palynologists generally argue for a position higher than that favoured by invertebrate palaeontologists, and so would now incorporate the well known "Allendale" *Eurydesma* fauna in the Carboniferous, rather than Permian as favoured by bivalve-brachiopod workers. This position would also agree with Chinese studies, in which the Maping-Asselian is regarded as Late Carboniferous. The Chinese now name their basai Permian "Longyinian" with a distinctive fauna traced through China into Tibet. A new, moderately well develop-ed fauna allied to the Tibet Longyinian is now found in the gold-bearing slates of the upper Rammatt Formation at Gympie. The level is widespread in northeastern Gondwana and is characterised by members of the *Cantrinelloides - Bandoprodux - Lyonia* productid brachiopod suite which also occurs in Tibet, Thailand, Western Australia and the Yarrol Basin.

10.1.2 ZIRCON DATING OF THE LATE PALAEZOIC OF AUSTRALIA

by John Roberts, Department of Applied Geology, University of New South Wales, PO Box 1, Kensington, NSW 2033, Australia.

A joint project between John Roberts, University of New South Wales, Dr. John Cloake-Long, BMR Post-doctoral Fellow at the Australian National University, Dr. Peter Jones of the Bureau of Mineral Resources, Geology & Geophysics (BMR), and Professor W. Compston, Research School of Earth Sciences, Australian National University (ANU), is using zircons from biostatigraphically locatable volcanics to establish firm dates within the Late Palaeozoic succession of eastern Australia. The zircons are dated by the SHRIMP ion probe at ANU which is capable of determining the U-Pb ages from single lamellae within zircon crystals. Because of the relatively young ages of the Late Palaeozoic samples, the analytical procedure takes approximately two days of machine time (10 hours per day) to determine an age with an acceptable probability; some samples have an analytical accuracy of plus or minus 1.8 Ma.

Roberts' part of the project, which is oriented predominantly towards the Carboniferous, is funded by the Australian Research Council, and the remainder by the BMR-APIRA Paneranozoic History of Australia Project (APIRA is a division of the Australian Mineral Industries Research Association).

The main objectives (not in any priority order) of the project are to date:

1. The Frasnian-Famennian boundary located between volcanics and limestones with *Palmatolepis gigas* and mudstone containing *Cheiloceras*.

2. Famennian strata containing *Phylloclymenia* and *Genuclymenia*. Both 1 and 2 will be accomplished in the Keetip region of the northern Tamworth Belt in the southern New England Orogen.

3. The Devonian-Carboniferous boundary by determining the age of units from the southern New England Orogen and Hasselbachtal, Germany, both of which contain condonites of the *Siphonodella sulcata* Zone.

4. The Carboniferous brachiopod zones of eastern Australia, particularly the Schellweinella burlingtonensis, *Orthotetes australis*, *Deltopinea aspina*, *Rhipidomella foritinucala*, *Marginirugus burlingtonensis* and *Levipustula levis* Zones (Roberts, 1975) by dating volcanics which underlie, intertongue with and overlie fossiliferous marine sediment in the southern New England Orogen (Roberts & Engel, 1987, fig.2). The age of the top of the *L. levis* Zone is an important objective because that zone can be used to correlate between Australia and South America. The age of the top of the zone
cannot be determined by biostratigraphic means because the fauna is restricted to Gondwana and cannot be related with northern hemisphere assemblages. In all except one section in eastern Australia, Carboniferous rocks overlying the L. levis Zone are non-marine. With the exception of the uppermost part, the Carboniferous marine section can be correlated with classical areas of the northern hemisphere on the basis of conodonts, ammonoids, trilobite and brachiopod faunas. Because brachiopods are the predominant fossils, they are used for correlation throughout eastern Australia. Within the marine sequence, it may be possible to suggest ages for the Tournaisian-Visean and Visean-Namurian boundaries.

5. The Late Carboniferous non-marine units of the southern New England Orogen, particularly the glacial successions which contains the *Potonisporites* Microflora (Kemp et al., 1977).

6. The Carboniferous-Permian boundary as utilised within Australia. A combination of a marine regression and the onset of glaciation and its attendant restricted floras and faunas renders it virtually impossible to correlate with precision between the Late Carboniferous and Early Permian of eastern Australia and elsewhere in the world.

7. The Permian marine invertebrate faunas of the Sydney and Bowen Basins, including the Allandale fauna (Runnegar, 1969) and Faunas II and IV of Dickins (1976).

8. The Late Permian coal measures of the Sydney and Bowen Basins.

Preliminary work involved 'tuning' the ion probe to cope with young zircons (it had primarily been used to date rocks from the Precambrian craton of Australia), prior to checking the ages of previously dated horizons from the Carboniferous of the New England Orogen (Roberts & Engel, in press). These volcanics included the Martins Creek Ignimbrite Member of the Gilmore Volcanic Group, the Paterson Volcanics and an unnamed pyroxene andesite within the Waverley Formation which has recently appeared on the international geological time scale (Cowie & Bassett, 1989) following publication of a date determined by MADDEP for J. Roberts (Jones, 1988). These three volcanics had been dated by K-Ar methods in earlier projects (e.g. Roberts & Oversby, 1974). The majority of K-Ar dates remain unpublished because of poor results from weathered volcanics (e.g. projects initiated by J. Roberts and also B. Runnegar, J. Roberts and J.D. Kleeman). On the basis of K-Ar determinations, the Martins Creek Ignimbrite has an age of between 331 and 328 Ma, the Paterson Volcanics 308 Ma and the unnamed pyroxene andesite 341 Ma.

Papers outlining new ages for Carboniferous volcanics and their significance to the Chronological Time Scale are currently in early stages of preparation. They should begin appearing in the literature in 1990.

References

10. 2 CANADIAN STUDIES

10.2.1 CARBONIFEROUS FLORAL STUDIES

from Erwin Zodrow, University College of Cape Breton, P.O.Box 5300, Sydney, Nova Scotia, B1P 6L2, Canada.

Erwin reports that he has just sent to press a monograph addressing the biostratigraphic problem of the cyathoid fossils (marattialean ferns, *Group Pecopteris arborescens*), after having studied types and related material that have been deposited in 15 museums or institutions. Associated travels took him to China, Europe (east & west), and USA.

He has also just teamed up with Zhifeng Gao (PhD, Cardiff), a postdoctoral fellow at the University College of Cape Breton, to investigate epidermal structures of a wide range of marattialean, medullocean and related compression foliages from the Westphalian/Cantabrian strata of the Sydney Coalfield. The aim is to catalogue characteristics for taxonomic utility and ultimately for biostratigraphy.

As an invited scientist to the Polish Geological Survey (Warsaw) and Wroclaw University (Wroclaw), collaborative investigations are in progress for homotaxial correlations, using microfloras: Upper Silesia - Europe - Sydney Basin, Nova Scotia.

Erwin is also investigating the distribution of geochemical elements in coals of the Sydney Coalfield, Nova Scotia. Over
the past 18 years he has catalogued a very extensive collection of hydrated sulfate minerals that formed after pyritic oxidation in coal. Mineral donations have been made to the Smithsonian Institution, Washington; Mineralogical Museum, Paris; and the Geological Survey of Canada, Ottawa.

10.2.2 CANADIAN PALYNOCOLOGICAL STUDIES
from John Utting, Institute of Sedimentary and Petroleum Geology, 3303, 33rd St.NW, Calgary, T2L 2A7, Canada.

Current palynological research of the Carboniferous of Canada concerns mainly the Canadian Arctic Archipelago (Sverdrup Basin) and the Yukon. Preliminary zonations based on miospores have been proposed for rocks of Viséan to Gzhelian age for both these areas, and summaries have been published (Utting, 1989; Bamber et al., 1989). In association with M. Jachowicz and A. Jachowicz (University of Silesia), work has recently been completed on the non-marine Viséan oil shales of the Sverdrup Basin. Correlations have been made with Western Europe and Spitsbergen allowing relatively precise age determinations to be made (results in press). In Atlantic Canada, work has been carried out in association with J.D. Keppie and P.S. Giles (Nova Scotia Department of Mines and Energy) on a preliminary zonation for the Tournaisian. Detailed correlations are proposed with Western Europe (results in press).

10.2.3 CARBONIFEROUS - PERMIAN BASIN ANALYSIS IN THE CANADIAN ARCTIC
from Benoit Beauchamp, Institute of Sedimentary and Petroleum Geology, 3303, 33rd St.NW, Calgary, Alberta T2L 2A7, Canada.

The Geological Survey of Canada is currently assessing the upper Paleozoic basin analysis of the Sverdrup Basin, Canadian Arctic. This long-term project will provide a basin-wide understanding of the stratigraphy, palaeoenvironments and economic potential of the 12 km thick Carboniferous and Permian succession of the Sverdrup Basin. Data from surface exposures and subsurface wells, as well as from seismic profiles, are being integrated for defining the long-term transgressive-regressive sequences of the basin. Various environmental aspects of volcanic, evaporite, clastic, and carbonate rocks are also being investigated, with emphasis on the spectacular reef succession that rims the basin. The environmental study of both marine and non-marine strata will also provide a thorough understanding of the climatic changes that took place throughout the studied time interval. A number of scientists are attached to the project, dealing with specific aspects of the succession. These include C.M. Henderson, E.W. Bamber, S. Pinard, W.W. Nassichuk, B.L. Mamet, and J. Utting (Biostratigraphy); P. Theriault, and B. Rust (Sedimentology); L. Snowden, and F. Goodarzi (Organic Geochemistry); G.R. Davies, H. Majid, and T. Brent (Subsurface Correlations); J.C. Harrison (Structural Geology).

In the summer of 1989, some of these scientists will return to Ellesmere Island in order to carry out detailed field work in an area of remarkable exposures. Emphasis will be given to: the Permian-Triassic boundary; the sedimentology of the Upper Carboniferous redbeds; sequence analysis; coral, conodont, fusulinid, and palynomorph biostratigraphy; reef analysis; and facies mapping and correlations. A number of papers have been written or will soon be published on various aspects of the project. These include preliminary accounts of the Carboniferous and Permian carbonate buildups (Can. Soc. Petrol. Geol. Memoir 13, 1989); a preliminary assessment of the long-term sequences of the Sverdrup Basin (Geol. Surv. Can., Paper 89-1G, 1989); and a detailed palaeoenvironmental, isotopic, and diagenetic study of upper Paleozoic Microcodium (in preparation).

10.2.4 LARGER FORAMINIFERA FROM THE CANADIAN ARCTIC
from Bernard L. Mamet, Département de Géologie, Université de Montréal, Montréal, P.Q., H3C 3J7, Canada.

Bernard reports that he is currently working with S. Pinard on samples collected by W. Nassichuk, G. Davies and B. Beauchamp (Geological Survey of Canada). They plan to establish a foraminiferal zonation ("Endothyrids") through the Carboniferous and Permian of the Sverdrup Basin.

In the Canadian Arctic, carbonate - evaporite sedimentation started in the Early Namurian Zone 18 and it is quite easy to recognize Zones 19-25 and to tie them with European standards (Bashkirkian - Moscovian). Late Carboniferous microfauna is very poor and only fusulinids are characteristic of the Orenburgian - Gzhelian levels. In the Asselian - Sakmarian, six foraminiferal zones enable correlations throughout the basin, but comparison with the Urals needs further work.

Charles Henderson (University of Calgary) has recently finished a PhD thesis on conodonts of a similar stratigraphic succession. He identified six zones in the Carboniferous and also six in the Asselian - Sakmarian. They can be tied in with the smaller foraminifera.

Endothyrids are much less prolific in the Arctic than in the Tethys. There are many broken phylogenies and there is a strong diachronism among some genera. In spite of these drawbacks, they have proven to be useful for short and long range correlations.

10.2.5 SMALL FORAMINIFERA OF THE CARBONIFEROUS AND LOWER PERMIAN, SVERDRUP BASIN
from Sylvie Pinard, Département de Géologie, Université de Montréal, C.P. 6128, succursale "A", Montréal, Québec H3C 3J7, Canada.

Small foraminifera of the Sverdrup Basin in the Canadian Arctic, have been studied, described and illustrated for the first time in a PhD thesis supervised by Dr. B. Mamet. The samples of more than forty stratigraphic sections measured in different sedimentary settings throughout the basin, were made available by the Geological Survey of Canada in Calgary (ISPG). Approximately four thousand thin sections were examined under a transmitted light microscope.
Fifty-seven genera and one hundred and sixty-two species were identified from the Namurian - Sakmarian sequences thus permitting the establishment of a biostratigraphic scheme designed to correlate sections across the basin. The thesis includes the description of ten new genera and twenty-two new species. Fifteen assemblages were recognised and described; of these, only the post-Moscovian Upper Carboniferous contains a poorly developed fauna. Until now, the small foraminifers of the Lower Permian have been overlooked despite their stratigraphic potential. In the Sverdrup Basin, they are as useful as the associated fusulines for detailed biostratigraphic correlation.

An arbitrary Carboniferous - Permian boundary has been based on the appearance of abundant Protodonosaria. This limit is supported by conodont and fusuline data and corresponds to a proliferation of small foraminifera, although some of these foraminifera genera are slightly diachronous in comparison to the USSR.

With the inclusion of the eurasian endemic form Janischewskina, the Namurian - Bashkirian fauna of the Sverdrup Basin are not characteristic of the North American realm. A comparison of the succeeding microfauna is difficult to make because of limited detailed data in the literature. During the Permian, the diversity and abundance of foraminifera are not typical of either warm or cold water microfauna and probably represent temperate conditions.

Few samples of post-Sakmarian sediments were examined with only two genera and seven species being described. They show good potential for stratigraphic correlation. The small foraminifera can be an important tool for those sediments where fusulines are lacking.

10.2.6 FORAMINIFERAL STUDIES

from Wilbert R. Danner, Department of Geological Sciences, University of British Columbia, 6339 Stores Rd, Vancouver, B.C. V6T 2B4, Canada.

Recent research by Dr. Danner has been concentrated on the re-study of the "early Pennsylvanian" limestones of the Quesnellia Terrane. The primitive fusulines of the Eospathiella fauna contained in these rocks are now believed to be of Late Mississippian age rather than Pennsylvanian. This has been further indicated by the conodont studies of Dr. Mike Orchard of the Canadian Geological Survey. This means that the largest and most widespread limestones units of the Chilliwack Group of southwestern British Columbia and northwestern Washington, and the Harper Ranch Group of south central British Columbia are of Late Mississippian age. A study of the coral Hexaphylla in these rocks is being followed up in collaboration with Dr. Kimiyoshi Sada of Hiroshima University, Japan.

Dr. Danner reports that he has retired as of July 1, 1989 but will remain at the University and will teach a third year course for Arts students on the Geology of Canada and its resources. Retirement plans include the completion of the mapping and study of the fusuline faunas of the Cache Creek Group in British Columbia and Washington with Merlynd Nestell of the University of Texas. Dr. Danner was given the teaching Excellence Award for 1988-89 by the University of British Columbia Science Undergraduate Society.
11.0 SERVICE ANNOUNCEMENTS

11.1 EUROPEAN MAPS FOR SALE

SOUTH-WEST BORDER OF THE EAST EUROPEAN PLATFORM; LITHOLOGICAL - PALAEO- GEOGRAPHICAL MAPS 1:1,500,000

IGCP Project 86 has sponsored the preparation of a series of sixteen maps edited by the Zentrales Geologisches Institut Berlin under the direction of K.-B. Jubitz, J. Znosko, D. Franke and G. Katzung. The series includes fifteen lithological-palaogeographical maps and one tectonic map, each in two parts (east, west), with explanatory text. The full series will cover:

- 1. Middle Cambrian
- 2. Llanvirnian
- 3. Ludlovian
- 4. Givetian
- 5. Upper Viséan
- 6. Westphalian A/B
- 7. Saxonian
- 8. Stassfurt-Series
- 9. Middle Bunter (Buntsandstein)
- 10. Muschelkalk
- 11. Pliensbachian
- 12. Oxfordian
- 13. Albanian
- 14. Turonian
- 15. Eocene
- 16. Tectonic Map

Each map will show multicoloured, palaogeographical conditions (shallow seas, littoral plains, lakes and swamps, volcanic areas, denudation areas, clastic influx, etc.), characteristic features of rocks, isopachs, 6-8 inset maps 1:10,000,000 (thickness, adjoining geological areas), in two parts (together 160 x 118 cm).

Five of the maps are now available but as yet no explanatory notes have been released. The five maps include (6) Westphalian A/B (1985); (7) Saxonian (1985); (9) Middle Bunter (1985); (12) Oxfordian (1987); and (16) Tectonic Map (1986), with 2 inset maps showing the arrangement of the main structures of the Platform Cover and Basement. This map (16) is now the largest scale tectonic map of the area.

The price of each map is DM 120 with the Standing-Order price being DM 100 per map. They are available from International Landeskartenhaus "GeoCenter", Schockenriedstrasse 40a, Postfach 8008 30, D-7000 Stuttgart 80, West Germany.

11.2 UPPER PALAEZOIC PALAEOBOTANICAL MEETING

Venue: Jardín Botánico de Córdoba, Córdoba, Spain
Dates: April 16-20, 1990
Organisers:
- R.H. Wagner (Córdoba);
- C. Alvarez-Vázquez (Córdoba)
- M.C. Diéguez (Mus.Nac.Ciencias Naturales, Madrid)
- M.J. Lemos de Sousa (Univ. Porto)

Aim of Meeting: 1. To acquaint palaeobotanists with the fossil floras recorded from the Carboniferous and Permian of the Iberian Peninsula. 2. To promote discussion on the distribution of Late Palaeozoic floras.

Changed Dates: The Committee apologises for the change of dates from September 1989, when this meeting was intended to follow the European Palaeobotanical Meeting in Madrid.

Program:
- Monday, April 16: Arrive in Madrid; register at the Museo Nacional de Ciencias Naturales; travel by coach to Puertollano.
- Tuesday, April 17: Visit Emma Opencast Mine of ENCASUR for collecting; bus to Córdoba.
- Wednesday, April 18: Meeting, papers, etc. in the Botanical Garden.
- Thursday, April 19: Symposium on the distribution of Late Palaeozoic floras in the World; evening entertainment.
- Friday, April 20: Visit Peñarroya Coalfield and Valdeinfierno.

Registration Charges:
- 32,000 pts (shared accommodation)
- 35,000 pts (single accommodation)

Field trip to Peñarroya/Valdeinfierno (incl. one extra night in Córdoba; bus fare; picnic lunch)
- 7,000 pts (shared accommodation)
- 8,000 pts (single accommodation)

Payment: Fees should be sent by bank transfer to Jardín Botánico de Córdoba
C/C 304-813253.1
Caja Provincial de Ahorros de Córdoba (Oficina Principal)

stating your name and PALAEOBOTANICAL MEETING, before December 31, 1989. A Late Fee surcharge of 5,000 pts is payable. Earlier registration is highly desirable in order to secure the most convenient accommodation.

Registrants should send their name, address, title of proposed papers and statement of intent to join the excursion on April 20 to C. Alvarez-Vázquez, Jardín Botánico de Córdoba, Apartado 3048, 14080 Córdoba, Spain.
SCCS CORRESPONDING AND TITULAR MEMBERSHIP LIST 1989

Please check your entry in this list and report any errors to the Secretary

(B) = Bureau Member (T) = Titular Member (WGC) = Working Group Chairman

ARGENTINA

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. S. Archangelinsky (T)</td>
<td>URQUIZA 1132, Vicente Lopez (1638), Buenos Aires, ARGENTINA</td>
</tr>
<tr>
<td>Dr. Carlos Azouy</td>
<td>Depto. de Ciencias Geologicas, Pabellon 2, Ciudad Universitaria, 1428 Buenos Aires, ARGENTINA</td>
</tr>
<tr>
<td>Dr. Carlos R. Gonzalez</td>
<td>Fundacion Miguel Lillo 251, 4000 Tuscan, ARGENTINA</td>
</tr>
<tr>
<td>Dr. M.S. Japas</td>
<td>Depto. de Ciencias Geologicas, Pabellon 2, Ciudad Universitaria, 1428 Buenos Aires, ARGENTINA</td>
</tr>
</tbody>
</table>

AUSTRIA

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. F. Rinner</td>
<td>Institut fur Geowissenschaften, Monauniversitat, A-9700 Loeben, AUSTRIA</td>
</tr>
<tr>
<td>Prof. Franz Kahler</td>
<td>Linsengasse 29, A-9020 Klagenfurt, AUSTRIA</td>
</tr>
</tbody>
</table>

BELGIUM

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. A. Delmer</td>
<td>Service Geologique de Belgique, 16 Av Col Daumerie, B-1160 Bruxelles, BELGIUM</td>
</tr>
<tr>
<td>Dr. E. Groessens</td>
<td>Service Geologique de Belgique, 13 rue Jenner, B-1040 Bruxelles, BELGIUM</td>
</tr>
<tr>
<td>Dr. E. Poty</td>
<td>Lab. Paléont., Univ. Liège, Place du XX Août 7, B-4000 Liège, BELGIUM</td>
</tr>
<tr>
<td>Prof. M. Stred</td>
<td>Lab. Paléont., Univ. Liège, Place du XX Août 7, B-4000 Liège, BELGIUM</td>
</tr>
</tbody>
</table>

BRAZIL

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Marlesi Marques Toigo</td>
<td>Rua Domingos, José de Almeida 185, Porto Alegre 90410, BRAZIL</td>
</tr>
<tr>
<td>Dr. A.C. Rocha-Campos (T)</td>
<td>Instituto Geociências, Unv.de Sao Paulo, CP 20899, São Paulo, SP 01498, BRAZIL</td>
</tr>
</tbody>
</table>

BULGARIA

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. V.G. Tenchov</td>
<td>Geol.Inst. al. Acad., Bonchev bloc 24, Sofia 1113, BULGARIA</td>
</tr>
</tbody>
</table>

CANADA

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. E.W. Bamber</td>
<td>Inst. of Sed. and Pet. Geol., 3303-33rd Street N.W., Calgary, AB T2L 2A7, CANADA</td>
</tr>
<tr>
<td>Mr. Sidney Barrs</td>
<td>506-6695 Coburg Road, Halifax, Nova Scotia B3H 4K1, CANADA</td>
</tr>
<tr>
<td>Dr. A.R. Berger</td>
<td>Geological Survey of Canada, Room 177, 601 Booth Street, Ottawa, ON K1A 0E8, CANADA</td>
</tr>
</tbody>
</table>

CZECHOSLOVAKIA

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. I. Chulupe</td>
<td>Ustredni usav geologicky, Poh.scharanka 85 PSC, PRAHA 1 118 21 Mala Strana, CZECHOSLOVAKIA</td>
</tr>
<tr>
<td>Dr. J. Dvorak</td>
<td>Ustredni usav geologicky, Leinertova 22, 60200 Brno, CZECHOSLOVAKIA</td>
</tr>
<tr>
<td>Dr. Jiri Pelek</td>
<td>Dept. Geol. Min. Dep., Fac. Science Charles University, 128 43 Praha 2, CZECHOSLOVAKIA</td>
</tr>
<tr>
<td>Dr.Ing. G. Weiss</td>
<td>Bachmásická 23, Ostrava 1, CZECHOSLOVAKIA</td>
</tr>
</tbody>
</table>

EGYPT

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Mahmoud M. Kholyef</td>
<td>Egyptian Petroleum Research Institute, N.Asr City, 7th Region, Cairo, Egypt</td>
</tr>
</tbody>
</table>

Notes:

- The payment for non-compliance with any provision of this list is US$30.00.
- The list is available in hard copy, as well as online at <http://www.sccs.org>.
<table>
<thead>
<tr>
<th>Country</th>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
<th>City, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>Dr. A. Bourouz (T)</td>
<td>110 Avenue Felix Faure</td>
<td>F-75015 Paris, FRANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. J. Coqul</td>
<td>UER Sci. de la Terre</td>
<td>Unité Techn. de Lille</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-59655 Villeneuve d'Ascq, FRANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. J. Doubinger (T)</td>
<td>Université L. Pasteur</td>
<td>1 rue Blessig</td>
<td>F-67034 Strasbourg Cedex, FRANCE</td>
</tr>
<tr>
<td></td>
<td>Dr. G. Lachkar</td>
<td>Labor. Micropol., Univ. Paris VI</td>
<td>4 Place Jussieu</td>
<td>F-75230 Paris, FRANCE</td>
</tr>
<tr>
<td></td>
<td>Prof. J.P. Laveine (T)</td>
<td>Lab. Paléobot. UFR Sci. de la Terre</td>
<td>Unité Techn. de Lille</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-59655 Villeneuve d'Ascq, FRANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. M. Legrand-Blain</td>
<td>Univ. Bordeaux III, Inst. de Geodynam.</td>
<td>Bat. de Géologie, Avenue de Facultés</td>
<td>F-33405 Talence Cedex, FRANCE</td>
</tr>
<tr>
<td></td>
<td>Dr. S. Lobozisk</td>
<td>Lab. Paleob. UFR Sci. de la Terre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Univ. Sci. Techn. de Lille</td>
<td>F-9565 Villeneuve d'Ascq, FRANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. M. Lys</td>
<td>Lab. Géol. Historique, Fac. Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Université Paris-Sud</td>
<td>F-91405 Orsay, FRANCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Institut de Paléontologie</td>
<td>8 Rue de Buffon</td>
<td>F-75005 Paris, FRANCE</td>
</tr>
<tr>
<td></td>
<td>Dr. M. Weyant (T)</td>
<td>Dept. Geologie</td>
<td>Univ. Caen Etudiante de la Paix</td>
<td>F-14032 Caen, FRANCE</td>
</tr>
<tr>
<td>HUNGARY</td>
<td>Dr. sc. Heinz Kozur</td>
<td>Rézoi u. 83</td>
<td>H-1029 Budapest, HUNGARY</td>
<td></td>
</tr>
<tr>
<td>IRELAND</td>
<td>Prof. G.D. Sevastopulo</td>
<td>Department of Geology</td>
<td>Trinity College</td>
<td>Dublin 2, IRELAND</td>
</tr>
<tr>
<td>JAPAN</td>
<td>Dr. Shuko Adachi</td>
<td>Institute of Geosciences</td>
<td>University of Tsukuba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. Massayuki Ehiro</td>
<td>Dept. Earth Sci., Fac. Gen. Education</td>
<td>Tohoku University</td>
<td>Sendai, JAPAN, 980</td>
</tr>
<tr>
<td></td>
<td>Dr. Y. Etsuki</td>
<td>Inst. Geol. & Mineral., Fac. Science</td>
<td>Hokkaido University</td>
<td>Kitakas, Sapporo, JAPAN, 060</td>
</tr>
<tr>
<td></td>
<td>Dr. Y. Fujiiwara</td>
<td>Inst. Geol. & Min., Fac. Science</td>
<td>Hokkaido University</td>
<td>Kitakas, Sapporo, JAPAN, 060</td>
</tr>
<tr>
<td></td>
<td>Dr. T. Harikawa</td>
<td>College of Arts & Sciences</td>
<td>University of Tokyo, Komaba</td>
<td>Tokyo, JAPAN, 153</td>
</tr>
<tr>
<td></td>
<td>Dr. Y. Hasegawa</td>
<td>Department of Earth Sciences</td>
<td>Fac. Gen. Edu., Niigata University</td>
<td>Niigata, JAPAN, 950-21</td>
</tr>
<tr>
<td></td>
<td>Dr. Hisaharu Igo</td>
<td>Dept. Earth Sciences</td>
<td>Tokyo Gakugei University</td>
<td>Koganei, Tokyo, JAPAN, 184</td>
</tr>
<tr>
<td></td>
<td>Dr. Hiroyoshi Igo (B)</td>
<td>Institute of Geoscience</td>
<td>University of Tsukuba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. T. Ishihashi</td>
<td>Dept. Geol., Fac. Science</td>
<td>Kyushu University</td>
<td>Fukuoka, JAPAN, 812</td>
</tr>
<tr>
<td></td>
<td>Dr. K. Ishida</td>
<td>Dept. Earth Sci., Col. Gen. Educat.</td>
<td>Tokushima University</td>
<td>Tokushima, JAPAN, 770</td>
</tr>
<tr>
<td></td>
<td>Dr. H. Ishiga</td>
<td>Dept. Geol., Fac. Science</td>
<td>Shimane University</td>
<td>Mutsu, Shimane, JAPAN, 690</td>
</tr>
<tr>
<td></td>
<td>Dr. K. Ishii</td>
<td>Inst. Geol., Col. Liberal Arts</td>
<td>Kobe University, Kobe</td>
<td>Kobe, JAPAN, 657</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dr. K. Nagai
Dept. Geol., Fac. General Education
Kyushu University
Fukuoka, JAPAN, 810

Dr. K. Nakamura
Dept. Geology & Minerslogy
Fac.Sci., Hokkaido University
Sapporo, JAPAN, 060

Mr. T. Nakamura
Geol. Dept., Kokusai-Kogyo Co. Ltd
3-6-1 Asahigaku, Hino-city
Tokyo, JAPAN, 191

Dr. K. Nakazawa
Koyama Shoumouchikawa-cho 28-2
Kita-ku, Kyoto, JAPAN, 603

Dr. I. Niikawa
Niigata University
Niigata, JAPAN, 950-21

Mr. S. Niko
Dept. Earth Sci. & Astronomy
Col. Arts & Sci., Univ. Tokyo
Komaba, Tokyo, JAPAN, 153

Dr. T. Nishida
Dept. Earth Sci., Fac. Education
Saga University
Saga, JAPAN, 840

Dr. Yuji Okinura
Inst. Geol. Miner., Fac. Science
Hiroshima University
Naka-ku, Hiroshima, JAPAN, 730

Dr. M. Ota
Kitakyushu Museum Nat.History
Yahatahigashi-ku
Kitakyushu, JAPAN, 805

Dr. Tomoowo Otawa
Earth Science Inst., Nagoya Univ.
Puro-cho, Chikusa-ku
Nagoya, JAPAN, 464

Dr. Kimiyoshi Sada
Hiroshima University
Hiroshima, JAPAN, 730

Dr. Y. Saito
National Science Museum
Hyakumon-cho, 3-23-1
Shinjuku-ku, Tokyo, JAPAN, 160

Dr. S. Sakagami
Dept. Earth Sci., Fac. Science
Chiba University
Chiba, JAPAN, 260

Dr. K. Sashida
Institute of Geosciences
University of Tsukuba
Tsukuba, Ibaraki, JAPAN, 305

Mr. A. Sugimura
Akiyoshi-daishi Museum Nat.History
Akiyoshido, Shubo-cho
Yamasuchi, JAPAN, 754-05

Dr. T. Sugiyama
Fukuoka University
Jomon-ku, Fukuoka, JAPAN, 814-01

Dr. K. Suyari
Tokushima University
Manjo-Mihima-cho
Tokushima, JAPAN, 770

Dr. K. Tachibana
Department of Geology
Waseda University
Uyeda 3, Moroka, JAPAN, 020

Dr. J. Tazawa
Niigata University
Niigata, JAPAN, 950-21

Dr. Ryuzo Toriyama
1-4-8 Nishi, Sawara-ku
Fukuoka, JAPAN, 814

Mr. K. Watanabe
Shinjuku 1-12-12, OSK 601
Shinjuku-ku
Tokyo, JAPAN, 160

Dr. N. Yamagiwa
Dept. Earth Science
Osaka Kyoku Univ., Tennoji-ku
Osaka, JAPAN, 543

Dr. Juichi Yamagida
Department of Geology
Kyushu University
Fukuoka, JAPAN, 812

MALAYSIA

Dr. I. Metcalfe
Institute of Advanced Studies
University of Malaya
Kuala Lumpur 59100, MALAYSIA

NORWAY

Prof. R. Sinding-Larsen
IUGS Sec .Gen., Geological Survey
Leiv Eirikssen vei 39, POBox3006
N7001 Trondheim, NORWAY

PEOPLES REP.CHINA

Dr. Gao Lianda (T)
Institute of Geology
Chinese Acad.Geological Sciences
Beijing, PEOPLES REP.CHINA

Professor Guo Hongjun (T)
Changchun College of Geology
Changchun, Jilin, PEOPLES REP. CHINA

Dr. Li Xingcun (T)
Nanjing Inst. Geol. Paleont.
Academia Sinica, Chi-Ming-Siu
Nanjing 210008, PEOPLES REP.CHINA

Dr. Ruan Yiping
Nanjing Inst. Geol. Paleont.
Academia Sinica, Chi-ming-siu
Nanjing, PEOPLES REP.CHINA

Dr. Yang Jingzhi
Nanjing Inst. Geol. Paleont.
Academia Sinica, Chi-ming-siu
Nanjing, PEOPLES REP.CHINA

Professor Yang Shiup (T)
China University of Geosciences
Chengfu Lu.
Beijing 10003, PEOPLES REP.CHINA

Dr. Yang Xiu (T)
Inst. of Geol. & Exploration
CCMRI, Coal Ministry, Xi'an
Shaanxi, PEOPLES REP.CHINA

POLAND

Dr. S. Skompski
Inst. Geol., Warsaw Univ.
Al Zwiorki i Wigry 92
PL02089 Warszawa, POLAND

Dr. H. Zawadzki
Panstwowy Inst. Geol., Oddzial-Swiebodzki
Slr Pozn.59
PL2595 Kielce, POLAND

PORTUGAL

Dr. M.J. Lemos de Sousa
Min. Geol. Fac. Ciencias
Praca Gomes Teixeira
Porto 4000, PORTUGAL

Dr. J.T. Oliveira
Servicos Geologicos de Portugal
rue da Academia d.Ciencias 19.2
Lisboa 1200, PORTUGAL

SPAIN

Dr. A. Garcia Loygorri
Inst. Geol. y Minero de Espana
Rio Rosas 23
Madrid 3, SPAIN

L.F. Granados
EN ADARO Invest.Min.
Doctor Baezordo 136
Madrid 28007, SPAIN

Dr. L.C. Sanchez de Ponsa
Depto. Geologia, Univ. Oviedo
Arias de Velasco, s/n
Oviedo, SPAIN

Dr. E. Villa
Unidad de Geologia
Facultad de Biologia
Leon 24071, SPAIN

Dr. R.H. Wagner (T)
ENCASUR
Penitroyo-Pueblonuevo
(Cordoba), SPAIN

SWITZERLAND

Prof. Dr. H. Ramon
Inst.de Geol., Univ. de Neuchatel
11 rue Emile-Argand
Neuchatel 7 CH 2000, SWITZERLAND

THE NETHERLANDS

Dr. M.J.M. Bles
Natuurhistorisch Museum
Bosquetplein 6-7, MAASTRICHT
6211 KJ, THE NETHERLANDS

Dr. M. Boersma
Lab. Palaeobotany & Palynology
Rijkunivers., Heidelberglaan 2
3508 TC Utrecht, THE NETHERLANDS

Dr. M. van den Boogaard
Rijksmuseum Geol. Miner.
Hooglandse Kerkgracht 17
2312 HS Leiden, THE NETHERLANDS

Appendix 1-3
UNITED KINGDOM

<table>
<thead>
<tr>
<th>Address</th>
<th>City, Postcode, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. R.L. Austin</td>
<td>Department of Geology</td>
</tr>
<tr>
<td>University of Southampton</td>
<td>Southampton SO9 5NH,</td>
</tr>
<tr>
<td></td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. C.J. Cleal</td>
<td>37 Lipscombe Close</td>
</tr>
<tr>
<td>Newbury, Berkshire RG14 5JW</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. J.W. Cowie</td>
<td>Chairman ICS, Dept.Geology</td>
</tr>
<tr>
<td>University of Bristol</td>
<td>Bristol BS8 1RJ, UNITED</td>
</tr>
<tr>
<td></td>
<td>KINGDOM</td>
</tr>
<tr>
<td>Acquisitions, Dept. Library Service</td>
<td>British Museum (Nat.Hist.)</td>
</tr>
<tr>
<td>Cromwell Road</td>
<td>London SW7 5BD, UNITED</td>
</tr>
<tr>
<td></td>
<td>KINGDOM</td>
</tr>
<tr>
<td>Dr. R.M.C. Edgar</td>
<td>23 High Bond End</td>
</tr>
<tr>
<td>Knaresborough</td>
<td>North Yorks HG59BT,</td>
</tr>
<tr>
<td></td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. A.C. Higgins</td>
<td>British Petroleum Res. Centre</td>
</tr>
<tr>
<td>Chertsey Rd, Sunbury-on-Thames</td>
<td>Middlesex TW167LN,</td>
</tr>
<tr>
<td></td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. D.A.L. Johnson</td>
<td>Department of Geology</td>
</tr>
<tr>
<td>University of Durham</td>
<td>Durham DH1 3LE, UNITED</td>
</tr>
<tr>
<td></td>
<td>KINGDOM</td>
</tr>
<tr>
<td>Mr. M. Mitchell</td>
<td>11 Ryder Gardens</td>
</tr>
<tr>
<td>Leeds W.Yorks LS8 1JS,</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. B. Owens</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>Keyworth, Nottingham</td>
<td>Nottingham NG125GG,</td>
</tr>
<tr>
<td></td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. W.H.C. Ramsbottom (T)</td>
<td>Brow Cottage</td>
</tr>
<tr>
<td>Kirkby Malzeard, RIPON</td>
<td>N.Yorks HG4 3RY, UNITED</td>
</tr>
<tr>
<td></td>
<td>KINGDOM</td>
</tr>
<tr>
<td>Dr. A.B.S. Strank</td>
<td>British Petroleum Res. Centre</td>
</tr>
<tr>
<td>Chertsey Rd, Sunbury-on-Thames</td>
<td>Middlesex TW167LN,</td>
</tr>
<tr>
<td></td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. W.J. Varver</td>
<td>Department of Earth Sciences</td>
</tr>
<tr>
<td>The University of Leeds</td>
<td>Leeds LS2 9JT, UNITED</td>
</tr>
<tr>
<td></td>
<td>KINGDOM</td>
</tr>
<tr>
<td>Dr. John Baesemann</td>
<td>Amoco Research Center</td>
</tr>
<tr>
<td>P.O. Box 3335</td>
<td>Tulsa, OK 74102, U.S.A.</td>
</tr>
<tr>
<td>Dr. James W. Baxter</td>
<td>Illinois State Geological Survey</td>
</tr>
<tr>
<td>615 E. Peabody Drive</td>
<td>Champaign, IL 61820, U.S.A.</td>
</tr>
<tr>
<td>Dr. Paul Brenckle (WGC)</td>
<td>Amoco Research Center</td>
</tr>
<tr>
<td>P.O. Box 3335</td>
<td>Tulsa, OK 74102, U.S.A.</td>
</tr>
<tr>
<td>Dr. D.K. Brezinski</td>
<td>Maryland Geological Survey</td>
</tr>
<tr>
<td>2300 St.Paul Street</td>
<td>Baltimore, MD 21218, U.S.A.</td>
</tr>
<tr>
<td>Dr. J.L. Carter</td>
<td>Carnegie Museum</td>
</tr>
<tr>
<td>4400 Forbes Ave</td>
<td>Pittsburgh, PA 15213, U.S.A.</td>
</tr>
<tr>
<td>Dr. William C. Darrah</td>
<td>2235 Baltimore Pike</td>
</tr>
<tr>
<td>Dr. J.T. Duto Jr (T)</td>
<td>RM E-311, Museum Natural History</td>
</tr>
<tr>
<td>Western, DC 20560, U.S.A.</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>Dr. Kenneth J. England</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>956 National Center</td>
<td>Reston, VA 20192, U.S.A.</td>
</tr>
<tr>
<td>Prof. F.R. Ettensohn</td>
<td>Department of Geology</td>
</tr>
<tr>
<td>University of Kentucky</td>
<td>Lexington, KY 40506, U.S.A.</td>
</tr>
<tr>
<td>Dr. Robert Gastaldo</td>
<td>Dept Geology, Auburn University</td>
</tr>
<tr>
<td>210 Petrie Hall</td>
<td>Auburn, AL 36849-5305, U.S.A.</td>
</tr>
<tr>
<td>Mr. William H. Gillespie</td>
<td>US Geological Survey</td>
</tr>
<tr>
<td>916 Churchill Circle</td>
<td>Charleston, WV 25314, U.S.A.</td>
</tr>
<tr>
<td>Dr. Brian F. Glenister</td>
<td>Department of Geology</td>
</tr>
<tr>
<td>University of Iowa</td>
<td>Iowa City, IA 52242, U.S.A.</td>
</tr>
<tr>
<td>Dr. Mackenzie Gordon Jr. (T)</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>RM E-301, Museum Natural History</td>
<td>Washington, DC 20560, U.S.A.</td>
</tr>
<tr>
<td>Dr. Thomas W. Henry</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>Denver Federal Center, MS 915</td>
<td>Denver, CO 80225, U.S.A.</td>
</tr>
<tr>
<td>Dr. A.S. Horowitz</td>
<td>Department of Geology</td>
</tr>
<tr>
<td>Indiana University</td>
<td>Bloomington, IN 47405, U.S.A.</td>
</tr>
<tr>
<td>Dr. R.M. Kosanke</td>
<td>U.S. Geol. Survey, Fed.Center</td>
</tr>
<tr>
<td>Bldg 25, Box 25046 M.S. 919</td>
<td>Denver, CO 80225, U.S.A.</td>
</tr>
<tr>
<td>Dr. Lance Lambert</td>
<td>Department of Geology</td>
</tr>
<tr>
<td>University of Iowa</td>
<td>Iowa City, IA 52242, U.S.A.</td>
</tr>
<tr>
<td>Dr. H. Richard Lane (WGC)</td>
<td>Amoco Production Co.U.S.A.</td>
</tr>
<tr>
<td>501 Westlake Park Blvd, RM 16.162</td>
<td>Houston, TX 77079, U.S.A.</td>
</tr>
<tr>
<td>Dr. Ralph L. Langenheim</td>
<td>Dept. Geol., Univ. of Illinois</td>
</tr>
<tr>
<td>254 N.B.H., 1301 W. Green St.</td>
<td>Urbana, IL 61801, U.S.A.</td>
</tr>
<tr>
<td>Dr. Richard Lund</td>
<td>Department of Biology</td>
</tr>
<tr>
<td>Adelphi University</td>
<td>Garden City, NY 11530, U.S.A.</td>
</tr>
<tr>
<td>Dr. W.L. Manger</td>
<td>Department of Geology</td>
</tr>
<tr>
<td>Univ. of Arkansas</td>
<td>Fayetteville, AR 72701, U.S.A.</td>
</tr>
<tr>
<td>Dr. Gene Mapes</td>
<td>Department of Botany</td>
</tr>
<tr>
<td>Ohio University</td>
<td>Athens, OH 45701, U.S.A.</td>
</tr>
<tr>
<td>Dr. Hermann W. Pfefferkorn</td>
<td>Dept. Geol., Univ. Pennsylvania</td>
</tr>
<tr>
<td>240 S 33rd St.</td>
<td>Philadelphia, PA 19104-6316, U.S.A.</td>
</tr>
<tr>
<td>Dr. Carl B. Rexroad</td>
<td>Indiana Geological Survey</td>
</tr>
<tr>
<td>611 N. Walnut Grove</td>
<td>Bloomington, IN 47405, U.S.A.</td>
</tr>
<tr>
<td>Dr. June R.P. Ross</td>
<td>Department of Biology</td>
</tr>
<tr>
<td>Western Washington University</td>
<td>Bellingham, WA 98225, U.S.A.</td>
</tr>
<tr>
<td>Dr. C.A. Ross</td>
<td>Cheslon U.S.A. Inc.</td>
</tr>
<tr>
<td>P.O.Box 1655</td>
<td>Houston, TX 77251, U.S.A.</td>
</tr>
<tr>
<td>Dr. C.A. Sandberg</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>Box 25046, MS 940,Federal Center</td>
<td>Denver, CO 80225, U.S.A.</td>
</tr>
<tr>
<td>Dr. W.J. Sando</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>RM E-301, Museum Natural History</td>
<td>Washington, DC 20560, U.S.A.</td>
</tr>
<tr>
<td>Alexander Sartwell, Librarian</td>
<td>Geological Survey of Alabama</td>
</tr>
<tr>
<td>P.O. Drawer 0, University Station</td>
<td>Tuscaloosa, AL 35466, U.S.A.</td>
</tr>
<tr>
<td>Dr. W. Bruce Saunders</td>
<td>Geology Department</td>
</tr>
<tr>
<td>Brym Mawr College</td>
<td>Brym Mawr, PA 19010, U.S.A.</td>
</tr>
<tr>
<td>Serials Department</td>
<td>University of Illinois Library</td>
</tr>
<tr>
<td>1408 West Gregory Drive</td>
<td>Urbana, IL 61801, U.S.A.</td>
</tr>
</tbody>
</table>
Dr. K.A. Astafieva
Museum Zemlevedenya, Mosksovsk.-
Gosud.Univ., Leninskie Gory
117234 Moskva, U.S.S.R.

Prof. I.S. Barskov
Mosksovsk. Gosud. Univ.
Leninskie Gory
117234 Moskva, U.S.S.R.

Dr. T.N. Belokaja
Paleont. Inst. AN USSR
Professorzayma ul. 113
117321 Moskva, U.S.S.R.

Dr. F.R. Bemsh
Inst. Geol. Geokhim
ul. Sulejmanovoy 33
700087 Tashkent, U.S.S.R.

Dr. O.I. Berchenko
Inst. Geol. Nauk AN USSR
ul. Chkalova 55b
252054 Kiev, U.S.S.R.

Dr. O.A. Betekhina
630090 Novosibirsk, U.S.S.R.

Dr. D.I. Bogoslovskaya
Paleont. Inst. AN USSR
Professorzayma ul. 113
117321 Moskva, U.S.S.R.

Mrs. O.I. Bogush
630090 Novosibirsk, U.S.S.R.
Dr. M.V. Shcherbakova
Polytechnical Institute
Konsonomolskij Avenue 29a
614600 Perm, U.S.S.R.

Dr. K.V. Simakov
USSR Acad. Sciences, Portovajy 16
685005 Magadan, U.S.S.R.

Dr. M.N. Solovieva (T)
Geological Inst. AN USSR
Pyezhevyky per. 7
109017 Moscow, U.S.S.R.

Dr. V.K. Teterov
Tehren. Otd. Urz. Nigri
ul. Tebzoa, 8
250000 Tchezmgol, U.S.S.R.

Dr. N.P. Vassiljuk
Donetskij Politehn. Inst.
ul. Artema 58
Donetsk, U.S.S.R.

Mrs. M.V. Vdovenko
Inst. Geol. Nauk AN USSR
ul. Chkalova 55b
252054 Kiev, U.S.S.R.

Mrs. N.G. Verbitskaya
V.S.E.G.E.I., V.O. Sredny pr. 72b
199026 Leningrad, U.S.S.R.

Mrs. G.P. Zoloukhina
V.N.I.I.N.G., ul. Lenna 86
400085 Volgograd, U.S.S.R.