Table of Contents

CHAIRMAN’S COLUMN .. 1
SECRETARY/EDITOR’S REPORT 1999-2000 ... 2
SCCS ANNUAL REPORT 1999 ... 4
WORKING/PROJECT GROUP REPORTS .. 6
 Working Group to establish a boundary close to the existing Tournaisian-Visean Boundary within the Lower Carboniferous ... 6
 Project Group 3: A chronostratigraphical level around the Visean V3a/V3b boundary 7
 New Project Group proposal: a GSSP close to the Visean-Namurian/Serpukhovian boundary 7
CONTRIBUTIONS BY MEMBERS ... 8
 On the number of Carboniferous series and stages (Menning et al.) .. 8
 Carboniferous-Permian Gondwanan palynostratigraphy (Playford & Dino) .. 10
 The search for a new T-V boundary GSSP. Report of field work in Yunnan and Guangxi (South China), April 2000 (Devuyyst et al.) .. 11
 Recent advances in the study of Upper Palaeozoic molluscs from the Tepuel-Genoa and Sauce Grande-Colorado Basins, Argentina (Sabattini and Pagani) .. 13
 A Provisional Conodont Zonation for Late Pennsylvanian (late Late Carboniferous) Strata in Midcontinent Region of North America (Barrick and Heckel) .. 15
 Exposures of the Westphalian Series in the upper Neath and Swansea Valleys, South Wales – a geoconservation project (Evans et al.) ... 23
 Possible candidate section for stratotype of Mid-Tournaisian boundary (Konstantinov Creek, Subpolar Urals) (Kossovaya et al.) .. 26
 A correlation of Carboniferous marine biozones of Argentina and Australia (González, & Taboada) .. 30
 Global cooling in the middle Carboniferous (Durante) .. 31
 Is cuticular functional-carbon biochemistry genetically dependent in Carboniferous pteridophyllous foliage? (Zodrow and Mastalerz) .. 33
 In situ pecopterid microspores from near the Westphalian D-Cantabrian Boundary in Sydney Coalfield, Nova Scotia, Canada (Zodrow et al.) .. 33
 Paleobiological interpretations and biostratigraphic problems (Remizova) .. 35
CONFERENCE REPORTS .. 38
 International Congress on the Carboniferous-Permian (XIV ICCP) August 17-21, 1999 38
 XIV ICCP SCCS Session Abstracts .. 39
 First Argentine Symposium on the Upper Paleozoic: Anillaco, La Rioja Province, Argentina, May 1999 45
NEW BOOK ANNOUNCEMENT .. 45
FORTHCOMING CONFERENCES .. 46
PUBLICATIONS BY SCCS MEMBERS ... 47
OBITUARY: Jos Bouckaert .. 48
SCCS VOTING & CORRESPONDING MEMBERSHIP 2000 49
SCCS OFFICERS AND VOTING MEMBERS 1999-2000 59
Chairman's Column

Just over one month from writing this column I will end a long, active membership of the SCCS. I would like to thank all those Voting Members who contributed to SCCS projects during my term of office as Chairman, particularly those in charge of Working and Project Groups. I urge them to continue their extremely valuable work.

During my term of office I was charged with the coordination and leadership of SCCS. However, my contributions to the establishment of workable and truly global subdivisions were largely subverted. The unprecedented and unwarranted ICS takeover of SCCS ballots concerning the naming and status of the two major subdivisions of the Carboniferous has resulted in the Carboniferous becoming the 'odd system out', being the only one in the Phanerozoic having major subdivisions at the Subsystem level. All other systems use series as the second rank subdivision, followed by stages as the main units for global correlation. If these subdivisions are successfully applicable by other subcommissions, why is it that we are now saddled with a more cumbersome and potentially complicated, if not unworkable, scheme? Unfortunately, the answer has no scientific basis, but comes from a political lobby seeking to control our discipline, an entirely regrettable development. It is also interesting to recall that the draft version of the ICS Global Chart had no column for subsystems and used only series and stages. Clearly, subsystems were not required at that stage of the chart's development.

Major problems now face the SCCS. Firstly, the two subsystems of the Carboniferous cannot be identified with sufficient precision to be usable throughout a large part of the world, including the Gondwanan continents of Africa, South America, India, Australia, Antarctica, the Arabian peninsula and Madagascar, and large fragments of Gondwana in China, Southeast Asia and Tibet. Another region where there is major difficulty in recognising the subsystems include Angaran parts of Siberia. What do Carboniferous workers in these regions now use as fundamental subdivisions of the system? All they can do is to continue using the superseeded units, in most cases the Dinantian and Silesian or lower and upper Carboniferous of the western European timescale.

The second major problem, which in terms of global correlation is potentially more serious than the first, concerns the use of series and stages. Should the current stages of the Carboniferous global scale be elevated to series or remain as stages? If they remain as stages, what should be done with the series? As one excluded from the ability to use the two subsystems, my suggestion is that the series of the Carboniferous global scale should be developed in such a way to accommodate the needs of workers outside the marine palaeotropical regions. Dinantian and Silesian are two possible subdivisions that could be considered.

If the opposite approach is taken and the current stages are used as series, the Carboniferous will become further out of step with other systems. I urge you to read the article by Manfred Menning in this issue which clearly indicates that the current stages of the Carboniferous are of comparable durations with those in adjacent systems. Should stages become series and current substages be elevated to stage status, the task of defining GSSPs would be entirely counter productive, if not impossible. Heckel and Villa's earlier suggestions that stages should be regional units, with series providing global correlation, is contrary to the approved definition of a stage and therefore not a viable alternative.

Following the IGC in Rio, the next SCCS will have a new executive and up to seven new Voting Members. The incoming executive has my best wishes for a fruitful and cooperative term, and I look forward to new and productive developments for all Carboniferous workers in the next four years.

John Roberts
The past year, and my last as Secretary, has been a traumatic one for the SCCS. Several major disputes arose between the SCCS and the ICS and adjudication on interpretation of ICS Satutes had to be sought from the IUGS. An unprecedented direct intervention in SCCS affairs was made by the ICS in which the ICS declared an SCCS ballot invalid and undertook its own ballot of SCCS Voting Members. The rank and names of the two primary divisions of the Carboniferous are now formally established as Sub-Systems and Mississippian (Lower) and Pennsylvanian (Upper) (see below). I sincerely hope, that now this matter is settled, that the SCCS can move forward to establishing the subdivisions of these primary divisions and the establishment of GSSPs for their boundaries. The SCCS had a one day session and a General Business Meeting at the International Congress on the Carboniferous-Permian held in Calgary, Canada, August, 1999. Please see the separate report and abstracts in this issue. As this is my last year as Secretary and the last Newsletter that I shall be editing, I would like to sincerely thank all SCCS members for their contributions to the Newsletter, for their generous donations to help the Subcommission’s finances and other support over the last four years. I would also like to thank the University of New England for facilities provided during the time that the Secretariat has been housed there.

New SCCS Executive

The four year period of the current SCCS executive expires at the IGC in Rio, August, 2000. In June, 1999 a ballot of Voting Members was conducted to elect the SCCS nomination to the ICS for the new Chair and Deputy Chair for the next four year period 2000-2004. There were two candidates for Chair, Dr Alexander Alekseyev and Prof. John Roberts, and only one candidate for Deputy Chair, Dr Philip Heckel. A secret ballot was conducted to elect our nomination for Chair, the result being the election of Prof. Roberts by 9 votes to 8. This result was conveyed to ICS for ratification by a vote of the full commission. The Chair of ICS responded that this could not go ahead as Prof. Roberts had not received a 60% majority support from the membership. I pointed out that according to ICS Statutes, a 60% majority was only required where there was only one candidate and a simple majority suffices where there is more than one candidate under ICS statutes. The Chair of ICS also attempted to rule out Prof. Roberts on the grounds that he had been a long standing Voting member of the SCCS and as such he required the approval of the Chair of ICS for a second term as Chairman, which he was not prepared to give. These attempts to overrule the SCCS nomination for Chair resulted in the SCCS asking for adjudication on the ICS statutes by the IUGS executive. The result was that Prof. Roberts’ name was eventually put to the full commission for ratification but with detailed information that Prof. Roberts had been nominated by a majority of only 1, failed to gain a 60% majority, and that he had been on the SCCS for more than 25 years. This type of information had NOT been provided for other Chairs elect in an earlier vote of the full commission of ICS. In an unprecedented vote by the full commission of ICS, Prof. Roberts failed to receive the required 60% majority for election. Dr Heckel was ratified as the new Deputy Chair commencing at the IGC in Rio (August, 2000). In a second round to elect an SCCS nomination for Chair, only one candidate was nominated, Prof. George Sevastopolu. Prof. Sevastopolu was then ratified by the full commission of ICS and would have been up for ratification at the IGC in Rio. Unfortunately, Prof. Sevastopolu has been forced by circumstances beyond his control to withdraw as Chair elect. This may well leave the SCCS moving into its next four year period of operations without a substantive Chair or Secretary.

Rank and Names of the two primary divisions of the Carboniferous

The controversy regarding the rank and naming of the two primary divisions of the Carboniferous raged on during the year and came to a head at the SCCS General Meeting held at the ICCP in Calgary in August, 1999. At this meeting, a “straw” vote of those present resulted in 19 votes for Sub-System and 19 votes for Series rank and was a clear indication of the split in the wider SCCS membership on this issue. At the meeting in Calgary, the SCCS executive undertook to hold a ballot of Voting Members on the rank status of the two divisions and then move quickly to a vote on the naming of these. In October, 1999 a ballot of voting members was initiated to decide if the rank of the two divisions of the Carboniferous should be Sub-Systems or Series. Prior to the deadline for this ballot being reached, the Chair of ICS declared the ballot invalid and the ICS initiated its own ballot of SCCS Voting Members on 19 November, 1999 with a deadline of 21 December, 1999. The two proposals in this ballot were: "Proposal 1: The two main divisions of the Carboniferous shall be named MISSISSIPPAN (Lower) and PENNSYLVANIAN (Upper). Proposal 2: The formal 1988 decision of SCCS to recognise the two divisions as Subsystems IS HEREWITHE CONFIRMED". Both proposals were carried
with more than the necessary 60% majority and the breakdown of voting is shown in the table below. I declined to vote in this ballot as I regarded it as illegal in that 22 persons were invited to vote, including two that had resigned as Voting Members in 1998, two more than the maximum allowable under the ICS statutes. The results of this ballot were subsequently ratified by the IUGS and are binding on the SCCS. The two primary divisions of the Carboniferous are therefore now formally determined to be Sub-Systems and named Mississippian (Lower) and Pennsylvanian (Upper).

Next Field and General Meeting

The next Field and General Meeting of SCCS will be held in the North American Mid-Continent in the Spring of 2001. Please see the separate report on the ICCP in this issue.

Ian Metcalfe

Breakdown of voting in ICS ballot (provided by the Chair of ICS):

<table>
<thead>
<tr>
<th>MISS./PENNS.</th>
<th>SUBSYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alekseev</td>
<td>NO</td>
</tr>
<tr>
<td>Brenkle</td>
<td>YES</td>
</tr>
<tr>
<td>Clayton</td>
<td>YES</td>
</tr>
<tr>
<td>Dutro</td>
<td>YES</td>
</tr>
<tr>
<td>Engel</td>
<td>NO</td>
</tr>
<tr>
<td>Gonzalez</td>
<td>NO</td>
</tr>
<tr>
<td>Heckel</td>
<td>YES</td>
</tr>
<tr>
<td>Lane</td>
<td>YES</td>
</tr>
<tr>
<td>Laveine</td>
<td>YES</td>
</tr>
<tr>
<td>Manger</td>
<td>YES</td>
</tr>
<tr>
<td>Ouyang Shu</td>
<td>YES</td>
</tr>
<tr>
<td>Roberts</td>
<td>NO</td>
</tr>
<tr>
<td>Rocha-Campos</td>
<td>YES</td>
</tr>
<tr>
<td>Sevastopulo</td>
<td>YES</td>
</tr>
<tr>
<td>Villa</td>
<td>YES</td>
</tr>
<tr>
<td>Wagner</td>
<td>YES</td>
</tr>
<tr>
<td>Winkler Prins</td>
<td>YES</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13</td>
</tr>
</tbody>
</table>

Donations in 1999/2000:

Publication of this Newsletter is made possible with generous donations received from the following members/institutes during 199-2000 and anonymous donations, combined with an IUGS subsidy of US$700 in 1999, and additional support from a small group of members who provide internal postal charges for the Newsletter within their respective geographic regions.

COVER ILLUSTRATION

SCCS ANNUAL REPORT 1999

Membership:
The Subcommission has 20 Voting members including the Executive Officers. In addition to this, corresponding membership at the date of publication stands at 257 and 7 libraries also receive the Newsletter.

Bureau Officers:
Chairman:
Professor J. Roberts
School of Geology
The University of New South Wales
SYDNEY NSW 2052
AUSTRALIA.
PHONE: +61 2 9385 4279
FAX: +61 2 9385 5935
E-MAIL: j.roberts@unsw.edu.au

Vice-Chairman:
Dr J.T. Dutro Jr
5173 Fulton St. NW
Washington DC 20016
U.S.A.
PHONE: +1-202-343-3222
FAX: +1-202-343-8620

Secretary/Editor:
A/Professor I. Metcalfe
Asia Centre
University of New England
ARMIDALE NSW 2351
AUSTRALIA.
PHONE: +61-67-739394
FAX: +61-67-739394
E-MAIL: sccs@une.edu.au

Activities in 1998/99:

SCCS Home Page is maintained on the internet at:

SCCS Session and Business Meeting at the ICCP in Calgary:
A well attended full day SCCS session, with 19 oral presentations, was held at the ICCP in Calgary in August, 1999. In addition, a formal SCCS business meeting was held and this was attended by more than forty persons. Please see separate report in this Newsletter.

Formal ballot of Voting Members regarding the rank status of the two subdivisions for the Carboniferous:
Following much discussion, a formal ballot of Voting was undertaken with the following two proposals being voted upon:

PROPOSAL 1:
"That the two subdivisions of the Carboniferous be of the rank of Sub-System"

PROPOSAL 2:
"That the two subdivisions of the Carboniferous be of the rank of Series"

Before the deadline for this ballot was reached, the ICS Executive declared it invalid and then conducted its own ballot of SCCS Voting Members (see Secretary's Report, this issue).

Newsletter Vol. 17:
Apart from results obtained by formal SCCS Working Groups and Projects (see above), the Newsletter on Carboniferous Stratigraphy (Vol. 17, 1999) has also reported results of a number of investigations including: The interval between the Levipustula and Costatumulus biozones in Patagonia; Permo-Carboniferous faunas and provincialism in the South American Gondwana region; Visean miospore biostratigraphy in northern Brazilian basins; Conodont faunas of the mid Carboniferous Boundary interval; Moscovian-Kasimovian Boundary problems; Lower Tournaisian of the Timan-Pechora Province; Late Devonian and Lower Carboniferous palynostratigraphy, China.

SCCS Work Plans for 1999-2001:
Ensure that the existing research program is continued into the succeeding years and that the formal SCCS Working Groups and Projects (see above) proceed efficiently towards their goals, preferably within a reasonable timeframe.

Following the result of the current ballot on the status of the two subdivisions of the Carboniferous, a ballot of voting members on the names of these subdivisions will be undertaken.

Field and General Meeting 2001: At the SCCS business meeting in Calgary, Walt Manger and colleagues offered to organise the SCCS Field and General meeting for 2001 in the North American Mid-Continent, beginning and ending in St Louis. This will probably take place in the spring (northern hemisphere) and will visit the Type Morrowan and the Mississippian-pennsylvanian boundary.

Definition of a GSSP for the base of the Visean (mid Lower Carboniferous boundary) (W.G.)

Definition of a GSSP for the base of the Kasimovian in the late Upper Carboniferous (W.G.)

Continued investigation for possible definitions of stratotype sections establishing:
- a global boundary close to the base of the Namurian (Project Group 3)
- a boundary in the early Upper Carboniferous near the base of the Westphalian. (Project Group 4) - a boundary close to the Visean-Namurian/Serpukhovian boundary (New Project Group)

Make a concerted effort to enlist geochronologists, stable isotope geochemists and magnetostratigraphers into SCCS working and project groups and into research groups around the world concerned with Carboniferous topics.
STATEMENT OF INCOME and EXPENDITURE FOR 1999:
(Definitive accounts are maintained in Australian currency).

<table>
<thead>
<tr>
<th>INCOME (Oct. '98 - Sept. '99)</th>
<th>$AUS</th>
<th>$US</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitive</td>
<td>Estimated</td>
</tr>
<tr>
<td>IUGS Grant 1998</td>
<td>1,055.12</td>
<td>700</td>
</tr>
<tr>
<td>Donations from Members</td>
<td>932.32</td>
<td>606</td>
</tr>
<tr>
<td>Bank Interest</td>
<td>0.50</td>
<td>0.33</td>
</tr>
<tr>
<td>TOTAL INCOME</td>
<td>1,987.94</td>
<td>1,306.33</td>
</tr>
</tbody>
</table>

EXPENDITURE

<table>
<thead>
<tr>
<th></th>
<th>$AUS</th>
<th>$US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newsletter 17 publication/ postage</td>
<td>1,039</td>
<td>675.35</td>
</tr>
<tr>
<td>Secretarial Assistance (Newsletter 17)</td>
<td>200.00</td>
<td>130</td>
</tr>
<tr>
<td>Bureau postage and stationery</td>
<td>192.55</td>
<td>68.16</td>
</tr>
<tr>
<td>Honorarium</td>
<td>150</td>
<td>130</td>
</tr>
<tr>
<td>Bank Charges</td>
<td>4.52</td>
<td>2.94</td>
</tr>
<tr>
<td>TOTAL EXPENDITURE</td>
<td>1,586.07</td>
<td>1,030.95</td>
</tr>
</tbody>
</table>

BALANCE SHEET (1998-99)

<table>
<thead>
<tr>
<th></th>
<th>$AUS</th>
<th>$US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funds carried forward from 1997</td>
<td>399.15</td>
<td>239.48</td>
</tr>
<tr>
<td>PLUS Income 1998-99</td>
<td>1,987.94</td>
<td>1,306.33</td>
</tr>
<tr>
<td>LESS Expenditure 1996-97</td>
<td>(1,586.07)</td>
<td>(1,030.95)</td>
</tr>
<tr>
<td>CREDIT balance carried forward to 1999-2000</td>
<td>801.02</td>
<td>514.86</td>
</tr>
</tbody>
</table>

BUDGET REQUEST FOR 1999/2000

<table>
<thead>
<tr>
<th></th>
<th>$US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newsletter 17 (preparation/ printing/postage)</td>
<td>700</td>
</tr>
<tr>
<td>(Net requirement assuming receipt of US$200 donations)</td>
<td></td>
</tr>
<tr>
<td>Other Bureau expenses</td>
<td>300</td>
</tr>
<tr>
<td>PROJECTED EXPENDITURE</td>
<td>1,000</td>
</tr>
</tbody>
</table>

The Subcommission has been advised by ICS that it has been allocated US$1000 in IUGS funding for 1999/2000.
The following Working/Project Group Reports and a proposal for a new project group were presented at the International Congress on the Carboniferous-Permian in late 1999:

REPORT OF THE WORKING GROUP TO ESTABLISH A BOUNDARY CLOSE TO THE EXISTING TOURNAISIAN-VISEAN BOUNDARY WITHIN THE LOWER CARBONIFEROUS SEVASTOPULO, GEORGE, Department of Geology, Trinity College, Dublin 2, Ireland (gisstpel@tcd.ie) and HANCE, LUC, Geological Survey of Belgium, Jannerstraat, 13, B1000 Brussels, Belgium

The aim of this project is to identify a boundary and to select a boundary stratotype and GSSP that corresponds as closely as possible to the base of the Visean as proposed in the 1967 Carboniferous Congress in Sheffield. Work has been concentrated on four topics based on stratigraphical sections around the boundary level: foraminiferal lineages; conodont lineages; the boundary between the CM and Pu Miospore Biozones in relation to the Tournaisian/Visean boundary level; and sea level changes close to the boundary level and their potential use in correlation. A lineage within *Eoparastaffella* has been established in sections in south China and it has the potential to provide a biostratigraphic tool of high resolution for correlations around the boundary level. The sections in south China are not ideal to serve as a stratotype section because of the lack of other fossils with good potential for correlation. Sections in the west of Ireland with *Eoparastaffella* are currently under investigation. Study of the distribution of *Gnathodus homopunctatus* in Ireland have not resulted in the recognition of an evolutionary lineage or of an ancestor for the taxon, which remains cryptogenic. The boundary between the CM and Pu Miospore Biozones appears to be older than the Tournaisian/Visean boundary level, which probably will be difficult to recognize using palynology. Work to date suggests important sea level change around the boundary level. A project has been initiated to assess the potential of these in correlation.

GENERAL REPORT OF WORKING GROUP TO ESTABLISH GSSP CLOSE TO THE MOSCOVIAN KASIMOVIAN BOUNDARY VILLA, ELISA, Departamento de Geologia, Universidad de Oviedo, 33005 Oviedo, Spain, evilla-asturias.geol.uniovi.es, and other members of the Working Group. Since the 1995 Krakow SCCS meeting, the Working Group to establish a GSSP close to the Moscovian/Kasimovian boundary (formerly Project Group 5) has studied and visited candidate successions in Kiev and Donetz Basin, Ukraine (1996), Oviedo and Cantabrian Mountains, Spain (1997), and Moscow, Russia (1998), attended by most members of the group. In 1999, a similar meeting will be held in Kansas City, USA, in conjunction with a pre-XIV-ICCP field trip to Midcontinent N. America. All meetings involved fieldwork and laboratory workshops that analyzed conodonts, fusulinaceans, brachiopods, and ostracodes. Conodonts and fusulinaceans appear to provide the most reliable clues for correlation at different levels, although additional work will be necessary before proposing a particular fossil as a marker. Two main difficulties remain concerning fusulinaceans and conodonts. In the case of fusulinaceans, the typical features associated with *Protritiites* (a relevant taxon for this level) can appear in several lineages derived from *Fusulinella*, but probably not wholly synchronously, thus introducing problems for correlation. With respect to conodonts, quite different taxonomic approaches exist as a result of the long period of isolation between eastern European and western specialists. Fortunately, these problems are being resolved by interaction among conodont specialists from different parts of the world, who viewed each other's collections, collected samples on the field trips, and are now initiating exchange of holotype photographs and discussion of taxonomy of critical morphotypes in order to initiate consensus on conodont systematics. In spite of these problems, several positive results have been achieved. Fusulinaceans within Eurasia offer possibilities for comparing both assemblage composition and evolutionary degree of some forms. Some fusulinaceans thought to be restricted to Eurasia have been discovered in North America. Also, several nearly identical
conodont morphotypes occur at similar levels in both North American and Eurasian successions. Since 1998, the Working Group has sought potential levels around the Kasimovian/Gzhelian (Missourian/Virgilian) transition.

PROJECT GROUP 3 REPORT. A CHRONOSTRATIGRAPHICAL LEVEL AROUND THE VISEAN V3a/V3b BOUNDARY. RILEY, NICK, British Geological Survey, Keyworth, England NG12 5AH, n.riley(-bgs.ac.uk The V3a/b interval (equivalent to the mid-Visean, Asian Stage of Britain) is characterised across Laurussia by cyclical sediments marking the onset of marine glacioeustatic cyclicity which dominates subsequent Carboniferous marine deposits. This important change in depositional style has potential for global correlation throughout the marine realm and across all palaeolatitudes. It serves to qualify the V3a/b interval as a candidate locus for a Lower Carboniferous GSSP. Around the V3a/b boundary there is a particularly severe marine flooding event which is associated with the introduction of new faunal elements (B2a Ammonoid Subzone, Gnathodus bilineatus Conodont Zone, Cifed Foraminiferal Subzone). Candidate sections need to be sought which display this flooding event and its associated faunal assemblages with a view to identifying a GSSP stratotype for this level in the Lower Carboniferous.

NEW PROJECT GROUP PROPOSAL: A GSSP CLOSE TO THE VISEAN NAMURIAN/SERPUKHOVIAN BOUNDARY RILEY NICK, British Geological Survey, Keyworth, England, NG12 5GG, n.riley@bgs.ac.uk The base Namurian is an important European chronostratigraphical boundary. Defined at a widely recognised marine flooding surface (Pendleian Stage), in the Craven Basin of Britain, it introduces the earliest primitive cravenoceratid ammonoids. The base of the Serpukhovian Stage, defined in the Moscow Syncline (Tarussky Horizon), Russia, correlates closely with the base Namurian and is applied across the former USSR. In Gondwana this boundary interval corresponds to a major, glacially induced, deterioration in climate coupled with severe marine biotic endemism. In N. America, the boundary interval lies in the Chesterian Stage. Close correlation with the base Namurian of Europe is achievable in basinal sections (e.g. Arkansas, Utah and Nevada) both in terms of marine biostratigraphy and marine flooding events. Recent advances in ammonoid (Titus 1996, Korn 1997) and conodont biostratigraphy (Skompski et al. 1995) as well as foraminiferal data present even better assemblage criteria than has previously been available for correlating a GSSP proposal at this important Eurasian subdivisional level for Carboniferous classification.

CONTRIBUTIONS TO THE NEWSLETTER

The Newsletter on Carboniferous Stratigraphy is published annually in July by SCCS. It is composed of written contributions from its members and provides a forum for short, relevant articles such as:

* reports on work in progress and/or reports on activities in your work place
* news items, conference notices, new publications, reviews, letters, comments
* graphics suitable for black and white publication.

Contributions for each issue should be timed to reach the Editor before 31 May in the year of publication. Material supplied well before this deadline would be appreciated. To facilitate setting up the Newsletter and to reduce typing errors, copy should be sent BOTH on paper and a computer disk. The Newsletter is prepared using Microsoft Word on the Macintosh but contributions on most other word processing systems can be accommodated. Material should be forwarded on 3.5 inch disks in either Macintosh or IBM format. If you can supply a disk, you should observe the following requirements. Please include a printed copy and the name of the word processing package that you have used. Supply two copies of the file on disk. The first can be the normal output of your software which can include enhancements such as bolding and italics but NO indents or leading TABS please. Avoid any unusual formatting features of your package. The second copy of the file should be saved as a plain ASCII text file (i.e. no enhancements). Please ensure that all typing is done with only ONE space after each full stop at the end of each sentence. Unless specifically requested the disk will not be returned since the cost of return postage is generally far greater than the original value of the disk. Please follow up your message with an air mailed, formatted, paper copy so that your special formatting (e.g. italics) can be restored by the Editor. Files can also be included in an E-mail message or attached as a Rich-Text-Format (RTF) file or MS Word document compressed with BinHex 4 on the Internet. Please send contributions to:

Dr Philip H. Heckel
Department of Geology, University of Iowa, Iowa City, Iowa 52242, U.S.A.
FAX: +1 319 335 1821
E-MAIL: philip-heckel@uiowa.edu
Contributions by Members

The data, viewpoints and interpretations expressed/presented in contributions by members are those of the individual authors/co-authors and are not necessarily those of the SCCS and carry no formal SCCS endorsement – Ed.

On the number of Carboniferous series and stages

Manfred Menning1, Zdzislaw Belka2, Jürgen Kullmann3, Dieter Stoppel4 & Dieter Weyer2

1GeoForschungsZentrum Potsdam, Telegrafenberg C128, D-14473 Potsdam, Germany, e-mail: menne@gfz-potsdam.de
2Institut für Geologie und Paläontologie, Eberhard-Karls Universität Tübingen, Sigwartstr. 10, D-72076 Tübingen, Germany, e-mail: belka@ub.uni-tuebingen.de
3Geologisch-Paläontologisches Institut, Sigwartstr. 10, D-72076 Tübingen, Germany, e-mail: Juergen.Kullmann@uni-tuebingen.de
4Bundesanstalt für Geowissenschaften und Rohstoffe, PF 51 01 53, D-30631 Germany

Viséan, Namurian, Westphalian, and Stephanian as stages (Fig. 1). The 21 Carboniferous units of West/Central Europe, Hastarian to Stephanian C, should be classified as substages (e.g. Cantabrian substages) to avoid a proliferation of stages and series.

We recommend that the number of Carboniferous series and stages should be comparable with the number of series and stages of other Palaeozoic and Mesozoic systems particularly with those of the neighbouring Devonian and Permian systems.

Since Munier-Chalmas & Lapparent (1893) the Devonian consists of three series and seven stages (Fig. 1). It is proposed to subdivide the most voluminous Devonian stage (Famennian, ca. 14 Ma) into four substages. The Permian is proposed to consist of three series and nine stages (Jin et al. 1994, Wardlaw et al. 1999) (Fig. 1). The Subcommission on Triassic Stratigraphy made a decision for the seven Triassic stages Induan to Rhaetian (Visscher 1992). About 16 Triassic substages are in general use. The Subcommission on Carboniferous Stratigraphy decided in 1957 to subdivide the Carboniferous globally into two subunits instead of three subunits.

Thus, for the Carboniferous of Central/West Europe the number of two series, five regional stages, and 21 regional substages is consistent with the numbers in the neighbouring systems.

A number of 21 Carboniferous stages for Central/West Europe and a number of seven to nine Carboniferous series, as discussed on the XIV International Congress on the Carboniferous-Permian in Calgary 1999, would be inconsistent with the number of stages and series in other Palaeozoic and Mesozoic systems. There, the maximum number of stages is in the Cretaceous (12), the number of series is two or three per system.

The global Carboniferous reference scale could be composed of seven to nine stages like in the Devonian and Permian. Figure 1 offers a combination of eight stages from Central/West Europe, East Europe, and North America for global use. The traditional units Dinantian and Silesian of Central/West Europe, the Lower, Middle and Upper Carboniferous of East Europe (slightly modified) as well as the Mississippian and Pennsylvanian of North America are consistent with the proposed global stages and series (Fig. 1).

Following these suggestions the number of the Carboniferous stages is comparable in East Europe (7), West/Central Europe (5), and North America (9) (Fig. 1). The Subcommission on Carboniferous Stratigraphy has to propose, as quick as possible, which of the regional stages should be combined and give their names for the global chronostratigraphic reference scale to avoid a global stratigraphic scale without Carboniferous stages (Steining & Piller 1999: 18).

Work on the volumes Stratigraphie von Deutschland, Unterkarbon (ed. D. Stoppel) and Stratigraphie von Deutschland, Oberkarbon (ed. V. Wrede) is in progress. The same stratigraphic terminology should be used for both volumes. Thus, on 5 May 2000 the Subkommission für Karbonstratigraphie der Deutschen Stratigraphischen Kommission proposed to classify the Lower Carboniferous and the Upper Carboniferous as series and to use the Tournaissian, Many geoscientists have problems to distinguish
lithostratigraphic, chronostratigraphic, and geochronologic terms. For a better understanding, lithostratigraphic terms and regional chronostratigraphic terms should be written in small letters if used in tables and figures. However, chronostratigraphic and geochronologic terms recommended by the Subcommission and confirmed by the International Commission on Stratigraphy (ICS) for global use should be typed in capital letters within tables and figures.

A more detailed paper outlining our point of view will be published in *Newsletters on Stratigraphy* later this year.

References

<table>
<thead>
<tr>
<th>Devonian System / Period</th>
<th>East Europe</th>
<th>Carboniferous System / Period</th>
<th>North America</th>
<th>Permian System / Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIES / EPOCH</td>
<td>STAGE / AGE</td>
<td>SERIES / EPOCH</td>
<td>STAGE</td>
<td>SERIES / EPOCH</td>
</tr>
<tr>
<td>Upper Devonian</td>
<td>Upper Kasimovian</td>
<td>Kasimovian</td>
<td>Kasimovian</td>
<td>?Kasimovian</td>
</tr>
<tr>
<td>Middle Devonian</td>
<td>Middle Moscovian</td>
<td>Moscovian</td>
<td>Moscovian</td>
<td>?Moscovian</td>
</tr>
<tr>
<td>Middle Devonian</td>
<td>Upper Bashkirian</td>
<td>Bashkirian</td>
<td>Bashkirian</td>
<td>?Bashkirian</td>
</tr>
<tr>
<td>Middle Devonian</td>
<td>Upper Upper Carboniferous</td>
<td>Serpukhovian</td>
<td>Serpukhovian</td>
<td>?Serpukhovian</td>
</tr>
<tr>
<td>Lower Devonian</td>
<td>Lower Carboniferous</td>
<td>Viséan</td>
<td>Viséan</td>
<td>?Viséan</td>
</tr>
<tr>
<td>Lower Devonian</td>
<td>Lower Lower Carboniferous</td>
<td>Tournaian</td>
<td>Tournaian</td>
<td>?Tournaian</td>
</tr>
</tbody>
</table>

Fig. 1 An optimal number of global Carboniferous series and stages is consistent with the number of series and stages of the neighbouring Devonian and Permian systems.
Carboniferous-Permian Gondwanan palynostratigraphy

Geoffrey Playford1 & Rodolfo Dino2

1 Department of Earth Sciences, The University of Queensland, Brisbane, Australia 4072
e-mail: geoff@earthsciences.uq.edu.au

2 Petrobras/Cenpes/Divex/ Sebipe, Ilha do Fundão, 21949-900 Rio de Janeiro, Brazil; and Universidade do Estado do Rio de Janeiro (UERJ), Faculdade de Geologia, Maracanã, 20550-900 Rio de Janeiro, Brazil
e-mail: dino@cenpes.petrobras.com.br

Ongoing collaborative research conducted by Geoffrey Playford and Rodolfo Dino focuses on detailed subsurface palynostratigraphy of the Upper Carboniferous through Permian sequence (Tapajos Group) of the Amazonas Basin in the northern Brazilian states of Amazonia and Pará. Numerous fully cored petroleum-exploration wells, drilled by Petróleo Brasileiro S.A. (Petrobras) throughout this extensive (500 km²) basin, have yielded profusely palyniferous (spore-pollen) assemblages that are well-suited to local, regional, and Gondwanic stratigraphic correlations.

Underpinned by detailed taxonomic studies of the spore and pollen components of the palynofloras, seven stratigraphically successive spore-pollen zones are recognizable through the Tapajos sequence. Ranging in age from Westphalian A through Late Permian, these zones are defined on several criteria; in particular, the introduction and/or exiting of selected species, consistent species associations, and relative abundances of particular species or morphological groups (such as taeniate and non-taeniate pollen grains, monosaccate pollen grains, etc). The zones are readily applicable to both intra- and extra-basinal stratigraphic correlations: viz., within the Amazonas Basin, elsewhere in South America (e.g., Paraná, Chaco-Paranense, Paranaiba, and Paganzo Basins), and in other regions of Gondwan (Australia, southern Africa, Antarctica, and the Indian Subcontinent). Furthermore, certain palynofloral similarities are evident between the Amazonas Basin and the United States Midcontinent; these imply some floristic interchange between the latter and northwest Gondwana in late Palaeozoic time. However, the dominant floral affiliation expressed by the Amazonas Basin palynofloras is clearly Gondwanic. This applies especially to higher parts of the Tapajos Group, in which taeniate bisaccate pollen grains assume increasing prominence and reflect important contributions from, at least in part, the peridiospermy glossopterids.

A two-part monograph by Playford and Dino, which details the palynological characteristics of the Tapajos Group, has been accepted for publication by Palaeontographica Abteilung B and is scheduled to appear in late 2000 or early 2001. A summary of major findings of the research is to be presented orally at the Upper Palaeozoic Symposium of the X International Palynological Congress (Nanjing, China; June 2000).

Cognate to the Amazonas Basin study is an assessment of Carboniferous palynofloral affinities between eastern and western Gondwana (notably South America and Australia), based on existing literature and on new observations by Dino and Playford pertaining to, respectively, Brazilian and Australian sequences. Numerous, morphologically distinctive species - mainly triete miopores - are identified as being shared by these regions, and hence are applicable to interregional correlation, i.e., where there is demonstrable concordance or near-agreement of stratigraphic ranges in these disparate Gondwanan situations. Some species, however, appear to exhibit stratigraphic/temporal mismatching, thus invoking - not unexpectedly - the possible effects of plant migration across Gondwana during Carboniferous time. An obviously limiting factor in precisely assessing the stratigraphic-correlative significance of some of the miopore taxa relates to uncertain or imprecise datings of their host strata in one or both of these two broad regions. Results of this study were presented orally at the XIV International Congress on the Carboniferous and Permian (Calgary, Canada; August 1999); and are detailed in a manuscript submitted for publication in the Congress proceedings volume.
The search for a new T-V boundary GSSP. Report of field work in Yunnan and Guangxi (South China), April 2000.

1. Université Catholique de Louvain, Unité de Géologie, pl. de la Pasture, 3 - B1348 Louvain-la-Neuve, Belgium. devuyst@hotmail.com, coen@geol.ucl.ac.be
2. Geological Survey of Belgium, rue Jenner 13, B-1000 Brussels, Belgium. Hance@geol.ucl.ac.be
3. Institute of Geology, C.A.G.S., Baiwanzhuang Road 26, 100037 Beijing, China. hfhou@public.fhnet.cn.net
4. Guizhou Geological Bureau, Beijing road, Guiyang, China.

Research assistant of the Belgian National Fund for Scientific Research (FNRS).

Debated for more than 10 years, the problem of the Tournaissian-Viséen (T-V) boundary is still not solved and an appropriate stratotype has yet to be found.

Shelf settings are not good candidates for a GSSP because of the end-Tournaissian regression and resulting karstic erosion. Therefore, investigations have to be focused on deeper environments (slope, basin) which recorded a continuous sedimentation during the T-V transition. It is the case for the existing T-V boundary stratotype, in the type area of Dinant (southern Belgium), but there, facies are unsuitable for the foraminifers due to restricted conditions in a peri-Waulsortian context.

The use of *Eoparastaffella* morphotype 2 in the lineage *E. morphotype 1 to morphotype 2* (Hance & Muchez, 1995; Hance, 1997) appears to be a promising criteria for defining the boundary. This proposal was based on material from the T-V transition in South China (Guangxi autonomous Region), in a slope and basinal setting, allowing to better correlate the foraminifer and conodont zonations.

Further investigations have been conducted in western Yunnan and Guangxi, in order to specify the use of *Eoparastaffella* as biostatigraphic criteria and to search for a GSSP candidate.

Western Yunnan is thought to have been part the Baoshan-Luxi Microplate with Gondwanan affinities during the Lower Carboniferous (Fig. 1A; Jin, 1994). Comparison with other classical areas of South China is therefore promising. Two sections situated near Shidian (Baoshan) were studied and sampled. In this area, Dinantian rocks are resting on Frasnian limestones and shales. The local occurrence of Strunian rocks is currently debated.

⇒ The **Dazhaimen** section (~140m) is particularly interesting and has yielded a very rich rugose corals fauna in its lower part. The upper part of the section exposes light-coloured thick-bedded pack- to grainstones, oolitic in the uppermost part. The position of the T-V transition is not determined yet. The oldest Tournaissian deposits have been attributed to the Upper Tournaissian.

⇒ The **You Wang** section (~110m) displays an interesting facies evolution. The Carboniferous starts with a conglomeratic layer (phosphatic pebbles) overlaid by fine-grained laminated limestones. The T-V transition is thought to be included in a succession consisting mainly of thin-bedded fine-grained crinoidal limestones, locally dolomitic, alternating with argillaceous limestones.

Among the sections visited in the Guangxi Autonomous Region, one was promising as potential T-V boundary GSSP candidate (Hance et al., 1997): the **Pengchong section** located near the City Liuzhou (Fig. 1B). There, the T-V transition is represented by a carbonate member, the Pengchong Member, included within the culm facies of the Luzhai Formation. This unit has yielded a rich and diversified well preserved foraminifer association, particularly with a well-documented evolution of *Eoparastaffella*.

Unfortunately, the section was not visited during the Subcommission fieldtrip in November 1996 (Hance et al., 1996), due to bad road conditions. In late April, a joint Chinese-Belgian delegation has reinvestigated the Pengchong section. Access is now easy (2 hr from the Guilin airport) and the section, studied with more details, appears much more continuous than initially thought. The Pengchong Member is more than 140 metre-thick. Exposure in the bed of a small stream is excellent. 103 new samples were collected for thin-sections and about 300 kg for conodont processing. All biostatigraphic results should be gathered within a few months. More weight will be given to sedimentology to have a better idea of palaeoenvironments and relative sea-level changes. Most likely, correlation of the Pengchong section with inner shelf facies will be improved, with implications for the global understanding of the T-V transition.

If the results are promising, the possibility of organizing a field meeting in South China in the falls 2001 will be submitted to the Subcommission. Interested
members are already requested to support this project and to indicate their likely attendance to such a field trip (one week maximum).

References

Figure 1: a) General map of China with the two provinces investigated during the field trip b) Palaeogeographic map of Guangxi at the end of the Touraisian (after Wu & Chen 1989) c) Palaeotectonic map of western Yunnan.
Recent advances in the study of Upper Palaeozoic molluscs from the Tepuel-Genoa and Sauce Grande-Colorado Basins, Argentina

Sabattini, N.* and Pagani, M.A.*

* Departamento Científico Paleozoología Invertebrados, Facultad de Ciencias Naturales y Museo de La Plata. Paseo del Bosque s/n, La Plata, 1900, Argentina.
E-mail: nsabattini@museo.fcnym.unlp.edu.ar
apagani@museo.fcnym.unlp.edu.ar

This contribution is a summary of several years work on the molluscs from the Tepuel-Genoa (Chubut Province) and Sauce Grande-Colorado (Buenos Aires Province) basins. Carboniferous and Permian Gastropoda, Bivalvia, Hyolitha and Polyplacophora, all groups with biostratigraphic and/or paleobiogeographic significance, were studied.

The previous biozonation proposed for the Tepuel-Genoa basin (Simanauskas and Sabattini, 1997) was mainly based on brachiopods and molluscs. It included the Lanipustula Zone, Pyramus Faunule, Tuberculatella Zone, Cancrinella Faunule and Neochonetes Zone. As the specimens of Cancrinella farleyensis and Cancrinella aff. farleyensis (Etheridge and Dunn) were subsequently referred to the genus Costatumulus (Taborda, 1998), the unit characterized by those species is now distinguished as the Costatumulus Faunule.

The Lanipustula Zone yields a few gastropods (Eumomphalidea) (Sabattini, 1995a) and several bivalves species (Deltocentridae, Streblocardiidae, Limidae, Polidevicidae, Schizoididae and Pholadomyidae) which resemble Australian taxa.

The Pyramus Faunule is exclusively characterized by bivalves, with the first appearance of the Malletidae, Grammysidae, Megadesmidae and Pterineidae. Genera of the last two families are exclusively Permian. This unit shows the largest diversity of Polidevicidae and Grammysidae. They show Australian and New Zealand affinities. The absence of the Limidae and Pholadomyidae is considered remarkable (Pagani, unpublished).

The Tuberculatella Zone is mainly characterized by gastropods and bivalves. Gastropods are represented by several Pleurotomarioidea families, with Permian genera known from other regions: Calliomorpha Batten is only known from United States; Nordospira Yochelson (Sabattini, 1999b), from the Leonardian-Wordian of Norway and Alaska; Platysteichus, from the Ararkinian-Kurugian of Australia and New Zealand. Glabrocinulum (Stenoszone) Batten is an exclusively Permian subgenus from Malaysia, India and Argentina. This zone contains the only Paleozoic Pleurotomarioidea gastropods found with preserved opercula (Sabattini, 1998). The bivalves of this zone include the oldest Nuculidae and Cardinidae. The remaining families had already been recorded in the previous biozones, and Limidae and Pholadomyidae are relatively important. The Malletidae show a change in species when compared with those found in the Pyramus Faunule. The Euchondriidae include the first record of Euchondria sabatti (González) (Pagani, unpublished). This biozone is characterized by the oldest record of cephalopods for this basin: i.e. Suerceras Riccardi and Sabattini (Orthocerida) which thus far is restricted to the Lower Permian of Argentina, Australia and India. Goniatitids are represented by a pandemic genus and a few endemic species. Hyolitha are well represented with three endemic species (Pagani and Sabattini, 1999). Scaphopoda are restricted to this biozone and include Calstevenus Yancey, a genus known from the Lower Permian of the United States.

The Costatumulus Faunule is limited to Pleurotomarioidea gastropods and scarce bivalves. The appearance of Streblopteria M'Coy, contrasts with the absence of Limidae, Pholadomyidae, Deltocentridae, Polidevicidae and a diversity decrease of Nuculidae and Malletidae (Pagani, unpublished).

In the Neochonetes Zone the molluscs are relatively important. The Bellerophontoidae are quite well represented and restricted to this biozone. The Pleurotomarioidea are characterized by the genus Eurylyta Batten, only known from Lower Permian of United States and Argentina. Platyceratoidea and Subulitoidea (first occurrence of Caenogastropoda in the Upper Palaeozoic of Argentina) are also present (Sabattini, 1997). The bivalves, include the oldest record of the Mytilidae, Myalinae and Permophoridae. Limidae, Pholadomyidae and Polidevicidae are also present (Pagani, unpublished). A Hyolitha species (Pagani and Sabattini, 1999) and the first Polyplacophora from the
Upper Palaeozoic of Argentina (Hoare and Sabattini, 2000) have also been recorded.

The significance of molluscs for the age and paleobiogeographic affinities of the biozones is as follows:

1) In the *Lanipustula* Zone molluscs are not significant, and the Namurian-Stephanian age (Simanauskas and Sabattini, 1997) was based on Australian affinities of bryozoans and brachiopods. 2) The *Pyramus* Faunule indicates the first Permian levels in the basin. Bivalves have Australian and New Zealand affinities. The age is possibly Asselian. 3) Gastropods of the *Tuberculatella* Zone show similarities with those from Australia, United States, Malaysia and Peru, whilst bivalves have Australian affinities. 4) In the *Costatumulus* Faunule molluscs are less diverse and all taxa are present in other units. 5) In the *Neochnetes* Zone gastropods are comparable with those from North America (Sabattini, 1996), whilst bivalves have Australian affinities. The age of these three units is Early Permian, starting in the Early Sakmarian. Research in progress suggests that the *Tuberculatella* Zone and the *Costatumulus* Faunule could be contemporary.

In the Sauce Grande-Colorado basin, the molluscs are represented by gastropods (Pagani, 1998) and bivalves (Pagani, 2000). Gastropods recorded in the Piedra Azul Formation, include a species of *Peruvispira* Chronic, showing affinities with taxa described from Peru and Brazil. Bivalves recorded in the Bonete Formation include: Inoceramidae resembling species from Western Australia; Etheripectinidae, with species of *Heteropecten* Kegel and da Costa showing close affinities to those recorded in the Paraná basin (Brazil); Deltoperpecten with one species of the Permian genus *Deltoperpecten* Etheridge, known from India, Australia and Tasmania, resembling Australian species; Mytilidae are related to taxa from New Zealand and Eastern Australia; Permophoridae include representatives of the Permian *Stutchbury* Etheridge, comparable to Brazilian species; Megadesmitidae are represented by species of *Myonia* Dana, a genus known from Australia, New Zealand and Russia. Two species of *Pterinoidea* and one of *Edmondiiidae* have also been recorded in this formation.

This fauna and the presence of *Eurydesma* Morris, suggest Gondwanic affinities related to the same transgressive event that affected the Paraná, Karoo and Kalahari basins, as well as India and Australia. Faunal composition is similar to that described by Simoes et al. (1998) for the Rio do Sul and Rio Bonito formations, Paraná Basin, Brazil. Thus, similar environmental conditions recorded in the Bonete Formation, resulted in the development of related faunas.

The Sierras Australes fauna is Early Permian in age. Presence of *Eurydesma*, *Deltoperpecten* and *Atomodesma* as well as affinities with Australian and Brazilian faunas and paleoecological assemblages indicate Late Asselian-Artinskian (Pagani, 2000).

References

A Provisional Conodont Zonation for Late Pennsylvanian (late Late Carboniferous) Strata in Midcontinent Region of North America.

James E. Barrick1 and Philip H. Heckel2

1. Department of Geosciences, Texas Tech University, Lubbock, Texas 79409-1053, USA.

2. Department of Geoscience, University of Iowa, Iowa City, Iowa 52242, USA

Introduction

Over the past several years important advances have been made in the understanding of Late Pennsylvanian conodonts and their stratigraphic distribution in cyclothems in the Midcontinent region of North America. The basic results of this work have been presented in series of publications, where ranges of significant conodont taxa have been plotted against the cyclothem succession of the northern Midcontinent and north-central Texas, and their utility in identifying and correlating cyclothsms in the northern Midcontinent with those in Texas and the Illinois and Appalachian Basins have been described (Heckel, 1989; Barrick and Boardman, 1989; Boardman and Heckel, 1989; Heckel and Weibel, 1991; Heckel, 1994; Ritter, 1994, 1995; Heckel, 1999;

A Provisional Conodont Zonation for Late Pennsylvanian (late Late Carboniferous) Strata in Midcontinent Region of North America.
create units of wider application. Because species of *Idiognathodus* and *Streptognathodus* exhibit a strong degree of provincialism during at least the Missourian (Barrick et al., 2000), we doubt that all parts of this zonation will prove to be applicable on the global scale.

Missourian Stage

Heckel and others (1999) have recommended that, for purposes of correlation, the base of the Exline cyclothem be used as a reference position for the base of the Missourian Stage in the Midcontinent region. (The base of the Missourian has also been regarded as the base of the Upper Pennsylvania Series in this region). The Exline level is slightly above the traditional base of the Missourian at the unconformity at the base of the Pleasanton Group in Kansas and the laterally equivalent base of the Seminole Formation in Oklahoma. The level of the Exline cyclothem was chosen because it contains the first appearance of *Idiognathodus eccentricus* (Ellison, 1941) above the first appearance of its ancestor, *I. sulciferus* Gunnell, 1933. Because it is the first new species of *Idiognathodus* to appear above the traditional boundary, the first appearance of *I. eccentricus* can serve as a biostratigraphic marker by which basal Missourian strata can be identified in the Midcontinent region. We propose the *Idiognathodus eccentricus* Zone to extend from the first appearance of the nominate species up to the first appearance of *Streptognathodus cancellatus* (Gunnell, 1933). The thin marine cyclothem (Checkerboard Limestone – South Mound Shale) that occurs above the traditional base of the Missourian but underlies the first appearance of *I. eccentricus* has yielded non-diverse conodont faunas characterized by *I. sulciferus*, which ranges up into the *eccentricus* Zone. In the Kansas-northern Oklahoma region, the *eccentricus* Zone includes (in ascending order) the intermediate Exline cyclothem, the minor Critzer cyclothem, and the major Hertha cyclothem. Within the upper part of the *eccentricus* Zone, the more nodose species, *I. n. sp. A* and *I. clavatulus* (Gunnell, 1933) appear at the level of the Hertha cyclothem (Barrick et al., 1996).

Recognition of the *eccentricus* Zone outside of the Kansas-Oklahoma region has been hindered by the absence or limited development of basal Missourian marine units in other nearby basins. Although the zone has not been found in the Appalachian Basin, the Scottville limestone of the Illinois Basin contains *Idiognathodus eccentricus*, which permits it to be correlated with the Exline cyclothem (Heckel, 1999). The next higher Cramer marine unit (Trivoli cyclothem) of the Illinois basin contains *I. clavatulus*, which indicates a correlation with the Hertha cyclothem in Kansas (Heckel and Weibel, 1991; Heckel, 1999), and thus with the upper part of the *eccentricus* Zone. In north-central Texas, *I. n. sp. A* and *I. clavatulus* occur in the Dog Bend cyclothem (Barrick and Boardman, 1989), which also has been correlated with the Hertha cyclothem (Boardman and Heckel, 1989). Conodonts of the *eccentricus* Zone have been identified also in the western United States, where they occur in the upper Honaker Trail Formation in the Paradox Basin of Utah, a short
distance above beds bearing Desmoinesian conodonts and fusulinids (Ritter et al., 1999).

The appearance of the distinctive species *Streptognathodus cancellatus* in the major Swope cyclothem above the Hertha cyclothem marks the divergence of the lineage that leads to the diverse *Streptognathodus* faunas of the later Missourian (Barrick et al., 1996). We propose the *Streptognathodus cancellatus* Zone to range from the first appearance of the nominate taxa up to the first appearance of *Streptognathodus gracilis* Staufer and Plummer, 1932. The *cancellatus* Zone used here is not the same as the Eurasian *cancellatus* Zone of Barskov (1984) and other authors. The species identified in Eurasia as *S. cancellatus* is a different species from the Midcontinent North American taxon. All *Idiognathodus* species occurring in the *eccentricus* Zone range into the *cancellatus* zone, and some additional unnamed forms may also be present. The *cancellatus* Zone includes four cyclothems in the Kansas-Oklahoma region (in ascending order): the major Swope cyclothem, the minor Mound Valley cyclothem, the major Dennis cyclothem, and probably the intermediate Hogshooter-upper Winterset cyclothem. *Streptognathodus confagus* (Gunnell, 1933) first appears in the Mound Valley cyclothem. In the Dennis and the overlying Hogshooter-upper Winterset cyclothem, *S. cancellatus* is uncommon and *S. confagus* is the most abundant species of the genus. Some *Idiognathodus* and *Streptognathodus* Pa elements in the Dennis fauna appear to be transitional to forms occurring in later Missourian cyclothems.

The lower part of the *cancellatus* Zone (Swope equivalent) has been identified in the Appalachian basin ('Lower' Brush Creek Limestone: Heckel and Barrick, in Heckel, 1994), the Illinois basin (Macoupin cyclothem, which is next above the Trivoli: Heckel and Weibel, 1991), north-central Texas (Upper Salesville Shale: Boardman and Heckel, 1989), as well as in the Paradox basin of Utah (upper Honaker Trail Formation: Ritter et al., 1999). The upper part of this Zone (Dennis equivalent) has been recognized in the Appalachian basin (the equivalent 'Upper' Brush Creek and Pine Creek limestones: Heckel and Barrick, in Heckel, 1994), the Illinois basin (Shoal Creek cyclothem, which is next above the Macoupin: Heckel and Weibel, 1991), north-central Texas (Palo Pinto Limestone: Boardman and Heckel, 1989), as well as in the Paradox basin of Utah (upper Honaker Trail Formation: Ritter et al., 1999).

Ritter (1995) proposed the *Streptognathodus gracilis* Zone to extend from the first appearance of the nominate species to the first appearance of *S. firmus* Kozitskaya, 1978. Here we use the first appearance of *Idiognathodus simulator* (Ellison, 1941) instead of *S. firmus* to define the top of the zone (see below). The *gracilis* Zone includes a large part of middle to upper Missourian strata in the Midcontinent region, extending from the intermediate Cherryvale cyclothem through the lower part (Captain Creek Limestone) of the major Stanton cyclothem and includes five major to intermediate cyclothems (in ascending order, Cherryvale, Dewey, Iola, Wyandotte and Plattsburg) and several minor cycles (Heckel, 1999). The *gracilis* Zone is characterized by the radiation and dominance of a closely related group of *Streptognathodus* species: *S. gracilis*, *S. elegans*, *S. elegantulatus* Staufer and Plummer, 1932, *S. exvultus* Staufer and Plummer, 1932, and *S. corrugatus* Gunnell, 1933. *Idiognathodus* Pa elements are usually assigned to *I. magnificus* Staufer and Plummer, 1932, but preliminary study of the *Idiognathodus* faunas reveals that other species are present as well.

Subdivision of the *gracilis* Zone is not yet possible using range data alone. Heckel (1999 and earlier papers) has used the acme of a prominently lobed and delicately ribbed morphotype, *I. magnificus sensu stricto* (a concept that includes the holotype) to identify the Quivira Shale of the Dewey cyclothem. This acme has been used to correlate the Dewey with the mid-Posideon Shale (PP3, the type stratum of the species) in north-central Texas (Boardman and Heckel, 1989) and with the Flat Creek cyclothem in the Illinois Basin (Pope, 1999: Flat Creek is the preferred name for the "Fithian" cyclothem of Heckel and Weibel, 1991). In the Muncie Creek Shale of the next higher Iola cyclothem, a closely related *Idiognathodus* morphotype with a reduced lobe (informally termed "postmagnificus": Heckel et al., 1998; Heckel, 1999) is characteristic and has been used to identify the Iola cyclothem and to correlate it with the La Salle/Lower Millersville cyclothem in the Illinois basin (Heckel and Weibel, 1991) and with the lower Wolf Mountain Shale in north-central Texas (Boardman and Heckel, 1989).

More recently, Heckel (1999) and Goettemoeller (2000) reported that a morphotype of *Streptognathodus* with a
bent trough axis (S. sp. A of Ritter, 1995) occurs in the intermediate Wyandotte and Plattsburg cyclothsms in the Midcontinent and in two equivalent cyclothsms above the LaSalle/Lower Millersville in the central Illinois Basin near the top of the gracilis Zone. Above the 'Upper' Brush Creek/Pine Creek marine unit in the Appalachian Basin, the conodont faunas of the Cambridge/Nadine and the Portersville/Woods Run marine units are dominated by morphotypes of the S. gracilis group, placing them into the gracilis Zone in that region.

Ritter (1995) proposed the Streptognathodus firmus Zone to extend from the first appearance of the nominate species in the upper Missourian to the first appearance of S. pawhuskaensis deflectus Ritter, 1995, well up in the Virgilian. Here we split the firmus Zone into two zones, the lower one of which is called the Idiognathodus simulator Zone. The lower boundary is defined by the first appearance of the nominate species and the upper boundary is defined by the first appearance of S. zethus Chernykh, 1987. Both I. simulator and S. firmus first appear in the Eudora Shale, the core shale of the Stanton cyclothem, thus the lower boundary of the simulator Zone is essentially the same as that of the firmus Zone of Ritter (1995). We hesitate to use S. firmus as a zonal index in the Midcontinent region because it may be an immigrant into the Midcontinent region from Eurasia (Barrick et al., 2000). Pa elements that could be ancestral to S. firmus are common in Kasimovian Eurasian faunas, most of which are assigned to "S. oppletus", a taxon that is different from true S. oppletus Ellison, 1941 in the Quivira

Shale of the Midcontinent region. In contrast, I. simulator is derived from Midcontinent forms of Idiognathodus, and transitional forms between I. simulator and typical flat-topped older Idiognathodus Pa elements occur in the Eudora Shale. Streptognathodus firmus does appear reliably in the Eudora Shale and its equivalents in the Midcontinent region, making it a useful species for correlation of shallower water facies. However, the species has been used as an index form in Eurasia, where it may have appeared at an earlier time.

Although Idiognathodus simulator is abundant in the Stanton cyclothem, it and other species of Idiognathodus are uncommon in most of the overlying cyclothsms. Through the next three cyclothsms (the intermediate South Bend and Iatan cyclothsms, and the minor Westphalia cyclothem), S. firmus occurs in decreasing numbers as the closely related species S. pawhuskaensis Harris and Hollingsworth, 1933 rises to dominance. In the Iatan cyclothem, forms of S. pawhuskaensis with a few irregularly distributed marginal nodes occur.

The Little Vermilion cyclothem of the Illinois basin (Heckel and Weibel, 1991) and the upper Winchell/Merriman Limestone of north-central Texas (Boardman and Heckel, 1989) have been correlated with the Stanton cyclothem based on the occurrence of Idiognathodus simulator and Streptognathodus firmus. The Noble Limestone of Ohio (above the Portersville marine unit) is correlated with the Stanton based on the presence of S. firmus (Heckel and Barrick, in Heckel, 1994). Correlation of strata equivalent to the upper part of the simulator Zone has been problematic, and this interval can currently be identified only by its position between the defining species of the simulator and zethus zones.

Virgilian Stage

The base of the Virgilian Stage has been placed at different levels in the Midcontinent region, as discussed by Boardman and others (1994). The level that we use here to mark the base of the Virgilian is the base of the Cass cyclothem (called 'Haskell-Cass' by Heckel et al., 1998) in the middle of the Douglas Group in Kansas. This level coincides with the first appearance of the species Streptognathodus zethus (Heckel, 1999).

Because Ritter's (1995) S. firmus Zone spans several cyclothsms ranging in age from late Missourian through early Virgilian, we propose that the Virgilian part be placed into a new zone, the Streptognathodus zethus Zone, the base of which is defined by the first appearance of the nominate species. The top is defined by the base of the pawhuskaensis deflectus Zone.

Recognition of the lower part of the zethus Zone outside of Kansas is complicated by the presence of similarly noded Pa elements that occur below S. zethus. Boardman and Barrick (1989) reported S. zethus from the Lower Colony Creek cyclothem in north-central Texas, but more recent work casts doubt on that identification. Heckel and Weibel (1991) identified S. zethus from the Omega marine unit in the Illinois basin and correlated it with the Cass cyclothem. The Oread cyclothem in Kansas, which lies in the upper part of the zethus Zone, is readily
distinguished from other lower Virgilian cycloths by the acme of *Idiognathodus simulan* and closely related *Pa* elements. The first appearance of *I. tersus* Ellison, 1941, and the last appearance of *I. simulan* are also in the Oread cyclothem (Ritter, 1995; Heckel, 1999). This acme at the end of the range of *I. simulan* has been used to correlate the Oread cyclothem with cycloths in north-central Texas (Finis cyclothem: Boardman and Heckel, 1989), the Illinois basin (Shumway cyclothem: Heckel and Weibel, 1991), and the Appalachian basin (Ams limestone: Heckel and Barrick, in Heckel, 1994).

Ritter (1995) erected the *Streptognathodus pahuskaensis deflectus* Zone to encompass the interval from the first appearance of the nominate species to the first appearance of *S. virgilicus* Ritter, 1995. *Idiognathodus lobulatus* Kozitskaya, 1978 appears at the base of the zone and ranges through it into the next zone. The *deflectus* Zone includes only two intermediate cycloths in the Kansas succession, the Clay Creek and Spring Branch cycloths of Heckel and others (1998) and Boardman (1999). This zone has not yet been recognized outside of Kansas.

The *Streptognathodus virgilicus* Zone of Ritter (1995) includes a significant proportion of middle to late Virgilian time, spanning approximately 30 cycloths of all scales as recognized by Boardman (1999). Its base, which is defined by the first appearance of the nominate species, lies at the Lecompton cyclothem, and its top, defined by the first appearance of *S. brownvillensis* Ritter, 1994, lies at the base of the Brownville cyclothem. Thus far, mostly long-ranging species have been reported from this zonal interval. Species of *Idiognathodus* (*I. tersus* Ellison, 1941 and *I. lobulatus*) and *Gondolella* (in any abundance) have their highest occurrence in the Midcontinent region in the basal cyclothem of the zone, the Lecompton cyclothem (Ritter, 1995). The highest occurrence of *Idiognathodus tersus* Ellison, 1941 has been used to correlate the Queen Hill Shale of the Lecompton cyclothem with the Necessity Shale of north-central Texas by Boardman and Heckel (1989) and with the Bogota cyclothem of the Illinois basin by Heckel and Weibel (1991).

Ritter (1995) showed that *Streptognathodus holtensis* Ritter, 1995 characterizes the middle portion of the *virgilicus* Zone (Topeka through Church cycloths). We propose that the first appearance of *S. holtensis* be used to define the base of an Upper *virgilicus* Zone. The boundary between the Lower and Upper *virgilicus* zones lies at the base of the Topeka cyclothem (defined by the Dubois Limestone-Holt Shale-Coal Creek Limestone sequence in Boardman, 1999). Because neither *S. virgilicus* nor *S. holtensis* have been identified outside of Kansas, the value of these zones remains to be fully evaluated.

Ritter (1995) proposed the *Streptognathodus brownvillensis* Zone to include the interval between the first appearance of *S. brownvillensis* at the base and the first appearance of *S. wabaunsensis* Gunnell, 1933, at the top. As Ritter (1995) and Chernykh and Ritter (1997) have used the zone, the base of the zone lies at the base of the Brownville cyclothem and includes strata up to the base of the Falls City cyclothem, where they report the first appearance of *S. wabaunsensis* Gunnell, 1933. Boardman (1999) reports that *S. bellus* Chernykh and Ritter, 1997 and the fusulinid *Leptotrinites* also appear in the Brownville cyclothem.

From the level of the Falls City cyclothem and higher, a rapid diversification in *Streptognathodus* produced a number of short-ranged species, many of which could be used to create a detailed zonation extending from the latest Pennsylvanian into the earliest Permian. The *S. wabaunsensis* Zone of Ritter (1995), which extends from the Falls City cyclothem up to the first appearance of *Streptognathodus* aff. *S. bareskovi* Kozur, 1976 in the Burr Limestone Member of the Grenola Formation of the Council Grove Group, includes the interval of the initial radiation of these taxa. However, the taxonomy and stratigraphic distribution of these *Streptognathodus* species are still unresolved (Chernykh and Ritter, 1997; Boardman et al., 1998; Boardman, 1999). For example, Boardman (1999) uses a more restrictive definition of *S. wabaunsensis* and indicates that this species appears five cycloths (mostly minor ones) higher in the section, in the Americus Limestone at the base of the Foraker megacyclothem complex. In the Falls City cyclothem, Boardman (1999) reports the species *S. alius* Akhmetshina, 1990, and in the Five Point cyclothem, *S. flexuosus* Chernykh and Ritter, 1997, two taxa that are similar to *S. wabaunsensis*. For now, we retain the base of the *wabaunsensis* Zone at the base of the Falls City cyclothem. Even if it is eventually determined that *S. wabaunsensis* first appears at a higher stratigraphic level, a zonal boundary could still be placed at the level of the
Falls City cyclothem, based on *S. altus*.

When Ritter (1995) proposed his zonation, the position of the base of the Permian had not been formally decided, but he indicated that the proposed level of the base of the Permian should lie within the *wabaunensis* Zone in the Glenrock Limestone Member of the Red Eagle Limestone. Subsequently, Chernyk and others (1997) proposed the new species, *Streptognathodus isolatus*, for a taxon that appears at the base of the Permian at the Aidaralash Creek global stratotype, and Chernyk and Ritter (1997) erected a new zone for the base of the Permian, the *S. isolatus* Zone, based on the first appearance of this species. Because *S. isolatus* occurs in the Glenrock Limestone of the Red Eagle Limestone in Kansas (Chernyk and Ritter, 1997), we replace the upper part of the *wabaunensis* Zone of Ritter (1995) with the *isolatus* Zone as defined by Chernyk and Ritter (1997) and use this zone to identify the position of the base of the Permian in the Midcontinent region.

References

Barrick, J. E., and Boardman, D. R., II, 1989, Stratigraphic distribution of morphotypes of *Idiognathodus* and *Streptognathodus* in Missourian-lower Virgilian strata, north-central Texas; in, Late Pennsylvanian chronostratigraphic boundaries in north-central Texas - glacial-eustatic events, biostratigraphy, and paleoecology, a guidebook with contributed papers, pt. II, Contributed papers, D. R. Boardman, J. E.

Boardman, D. R., II, Nestell, M. K., and Wardlaw, B. R., 1998, Uppermost Carboniferous and lowermost Permian deposition and conodont biostratigraphy of Kansas, USA; in Permian Stratigraphy in Environment and

Figure 1. – Preliminary conodont zonation of Late Pennsylvanian Missourian and Virgilian Stages in Midcontinent North America. Thicker bars in ranges of certain taxa indicate conspicuous acmes. Cyclothem succession for Missourian through mid-Virgilian strata was illustrated in a previous edition of this Newsletter by Heckel and others (1998).
Exposures of the Westphalian Series in the upper Neath and Swansea Valleys, South Wales – a geoconservation project

B. Evans, C. J. Cleal and B. A. Thomas

1. Department of Biodiversity and Systematic Biology, National Museums and Galleries of Wales, Cardiff CF10 3NP, UK
2. Department of Geography, University of Wales Lampeter, Ceredigion SA48 7ED, UK

The study of the Upper Carboniferous in Europe is often hindered by restricted natural exposure. So long as the coalfields were being commercially exploited, this was not a significant problem because mining produced excellent temporary exposures. However, the decline, and in many areas disappearance, of coal mining means that this scientific resource is no longer available. There is also the problem of trying to define stage boundary stratotypes for these sequences, because the IUGS Commission on Stratigraphy requires them to be in ‘natural’, conservable exposures.

The largest area of coal-bearing Westphalian strata in Western Europe is on the Variscan Foreland, where there is a series of coalfields between Britain in the west and Poland in the east. The sequences here are particularly important because of their historical connection with the concept of the Westphalian Series (Wagner, 1974) and is where the boundary stratotypes for its lower three stages (Langsettian, Duckmantian and Bolsovian) are defined. However, surface exposure is all but non-existent throughout most of the area; the only significant exceptions being in the British Isles.

As part of a national review of the exposed geology of Britain (the Geological Conservation Review), Cleal & Thomas (1996) examined all of the important surface outcrops of Westphalian strata in the country. A number of major coastal exposures were identified showing parts of the Westphalian sequence, including Pembroke, Northumberland and Fifeshire. However, the only area where there is a continuous natural exposure of most of the lower three Westphalian stages is the north crop of the South Wales Coalfield.

One section in particular stood out as providing an unrivalled record of the Westphalian of the Variscan Foreland. The streams of Cwm Gwrelech and Nant Llyn Fach near Glyn Neath together provide a continuously exposed section from the Subcrenatum Marine Band (base Westphalian) to the Cambriense Marine Band (middle Bolsovian). Despite its importance, however, the section had never been properly documented, with the only published record being some very piecemeal and generalised logs in an old edition of the local geological memoir (Robertson, 1932); the latest edition of the memoir (Barclay et al., 1988) hardly mentions the site.

The site has been scheduled as a Site of Special Scientific Interest by the Countryside Council for Wales (CCW) and is, therefore, subject to some level of protection. It is also a candidate site for the IUGS World Geosites inventory. However, practical conservation of such sites requires a detailed knowledge of the field geology, information that is not currently available. To remedy this, CCW and the National Museums & Galleries of Wales are jointly funding a geological survey of the site, including detailed stratigraphical logging and the identification of the key palaeontological levels.

The work started in early October 1999 and, despite some unfavorable weather conditions in the late winter months, just over half the total section length (4km) has been logged at time of writing (May 2000). Mapping and correlation of the coal seams is proving very difficult due to the extent of past commercial and private coal extraction. In some cases, coal seams can only be identified by correlation with samples from other exposures, by petrological laboratory analysis. Another problem is the absence of many of the marine bands normally found in the British Coal Measures, and which are important stratigraphical markers. However, several marine bands have been found in the adjoining Silar open-cast site, including the Vanderbeckei Marine Band (Langsettian – Duckmantian boundary), the Haughton and Sutton Marine Bands (upper Duckmantian) and the Aegirinum Marine Band (Duckmantian – Bolsovian boundary). It is hoped to be able to trace these marine bands the short distance overland to the studied stream section, where they can be excavated.

The base of the Westphalian (Subcrenatum Marine Band, in a goniatitepectinoid biofacies) is over 17 m thick here, but will require some vegetation clearance to expose...
it fully. The overlying thick sandstone known as the Farewell Rock, with its excellent cross bedding and slump structures, is well exposed. The Astell Coal, which occurs directly above the Farewell Rock, cannot now be seen but its position can be identified by a large adit. The Springwood, Honley, Listeri and Parkhouse Marine Bands, and the associated plant beds, are missing due to large rotational failure landsliding. It is hoped to identify alternative local sections for these horizons.

Upstream from the landslide is an exposure of a marine band, probably the Amalicia. Elsewhere in South Wales a coal known as the Cnapioog Seam overlies the Amalicia Marine Band. This is now exposed at Cwm Gwrelach, but its position may be marked by several small mine adits that have since collapsed and are inaccessible. Much of the next part of the section is occupied by ancient ironstone workings. There is significant exposure here of the hard tabular and nodular lacustrine ironstones, traditionally known as 'mine'. These beds are devoid of any plant material but do occasionally produce Carbogenic remains.

Several coals above the 'mine' have provisionally been identified as the New, Grey and Rydham seams, although their poor exposure, and the amount of thrusting that has been taken up in these horizons, makes accurate identification difficult. The Bluers (Seven Feet) Seam is a two-layer coal found in the Nant Gwrelach stream section. It displays good outcrop characteristics and is the lowest unit identified in the adjacent Selar opencast site. Sedimentary logging of the exposure up sequence of the Bluers Seam (including the Lower Brass Seam) is currently being undertaken. Exposure in the riverbed is good and interesting thrust features can be seen. The sequence here is predominantly non-marine, with several bands containing pyritised non-marine bivalves.

There is good exposure in the adjacent Cwm Cefyl valley of formations either side of the Vanderbecki Marine Band, where it is preserved with associated Amman Rider Seam. The Brass seam, the lowest Duckmantian coal, is thrust out and is only found in the lowest excised level of the opencast exposure. A significant part of the Cwm Cefyl exposure has been lost in the recent past during the development of an access road to the opencast, and to culverts being built over the stream 0.75 km up stream by foresters. Good exposure does still exist in the Cwm Gwrelach valley and, as part of the conservation of the site, several sections are to be excavated by Countryside Council for Wales and documented for inclusion in the Geological Conservation Review.

Fossil rich horizons are numerous throughout the section, with the best plant fossil horizons being in roof shales and occasional channelised sandstones. Pyritised non-marine bivalves also occur in some mudstones below the Vanderbecki Marine Band. Collection of fossils from the stream section and adjacent opencast pit is scheduled for later in the summer. The collected specimens will then be conserved, documented and held in the National Museums and Galleries of Wales (Cardiff) as a permanent palaeontological record of the site. It is hoped that access to the Selar opencast site will permit bulk collection of better quality specimens than the highly weathered material obtainable in the stream valleys.

The eventual outcome of this project will be a detailed conservation strategy for this internationally important site. It will also provide the first detailed stratigraphical log through a large part of the Westphalian Series, which can be compared with field observations in a conserved site. The boundary stratotypes for the lower three Westphalian stages are also in conserved outcrops, in northern England. However, they are in tiny exposures that show little more than the marine band that are used to identify the stage boundary. We have in South Wales what is, in effect, a standard section through the body of these stages in their classic facies as developed in the paralic coalfields.

References
Figure 1. Middle part of the succession exposed along the Cwm Gwrelych – Nant Llyn Fach streams near Glyn Neath, South Wales, UK.
Possible candidate section for stratotype of Mid-Tournaisian boundary (Konstantinov Creek, Subpolar Urals)

Olga L. Kossovaya 1, Andrey V. Zhuravlev 2, Dmitry B. Sobolev 2, and Yadviga A. Vavel 3

1 - All-Russian Geological Research Institute, St. Petersburg, Russia; e-mail: stratigr@mail.wplus.net
2 - Geological Institute of Komry SC RAS, Syktyvkar, Russia;
3 - All-Russian Geological Oil Prospecting Institute, St. Petersburg, Russia

The search for a Mid-Tournaisian boundary stratotype (SCCS Project Group 1 - see Carboniferous Newsletter 14, 1996, p. 4) has been made difficult by realisation that a prominent eustatic couplet (sea level fall-rise) occurred just before the boundary of the Lower and Upper Tournaisian. This couplet resulted in a stratigraphic interval (approx. sandbergi conodont zone) wherein fossils are scarce and sharp lithological change or short-term hiatus occurs.

The section is located in the road cut on the left bank of the Konstantinov Creek (left tributary of the Kozhym River, Subpolar Urals, (65.39.00 N., 59.43.48 E)). This location is available from railway station Kozhym, about 120 km north-east of town Pechora.

The section had been studied in 1986 by V. Chernykh and A. Tereshchuk, in 1987-89 by A. Zhuravlev and D. Sobolev, in 1994 by A. Zhuravlev (Zhuravlev, 1998), and in 1999 by the authors of this paper.

A number of fossils are studied from this section (conodonts, ostracodes, foraminifers), also palaeomagnetic and geochemical studies are in process.

Two levels may be considered as the middle-Tournaisian boundary, the base of the crenulata zone or the base of the Siphonodella quadriplacata zone. The first level coincides with a turbidite layer (?) base (unit?) and it is not biostratigraphically reliable due to strong reworking of fossils. However the level is characterised by the Upper Tournaisian foraminifers (Chernyshinella glomiformis Lip. and Septibrusina kraitica Lip.). The second level is better, because of its position in the lithologically uniform member (chert, cherty limestone, and argillite alternation) and fossils are not significantly reworked there. Conodonts are rather abundant and the first appearance of Siphonodella quadruplicata in the evolutionary lineage from Siphonodella duplicata sensu Hass to Siphonodella quadruplicata is recognised. Unfortunately, the cherty deposits contain only scarce poorly preserved ostracodes and foraminifers.

The section under consideration is located on the western flank of the Kozhym monoclinal (Fig.1). The Lower Carboniferous strata dip steeply westward, approximately 40-50 degrees. The sediments were altered thermally (conodont alteration index is 4-5), but strong tectonic deformation is absent.

Mid-Tournaisian boundary beds are represented by the following units (in ascendant order, Fig.2):

1. Layer of cherty spicule pack-wackestone (Tn-16/94) characterised by unclear bedding. The rock contains scattered sulfides (about 1%), oriented monaxon spicules, ostracode shells and conodonts. Unit thickness is 0.3 m.

2. Unit of thin alternation of cherty and carbonateous argillites (Tn-16/2/99, Tn-16/1/99). Fossils are represented by radiolarians, spicules, thin-shelled brachiopods, and conodonts. Unit thickness is 0.5 m.

3. Lens-like bedded alternation of cherty argillite and spicule chert containing rare radiolarians (about 5%), ostracodes, and conodonts (Tn-17/94). Rock contains abundant scattered organic matter. Unit thickness is 0.25 m.

4. Cherty spicule packstone (Tn-18) with thin detritic layers, scattered sulfides (up to 5%), organic matter, abundant ostracodes (Gramminia zilimica Kotsch.), thin-shelled brachiopods, and conodonts. Unit thickness is 0.1 m.

5. Laminated cherty argillite (Tn-18-1/99). Unit thickness is 0.15 m.

6. Cherty spicule wackestone (Tn-18-2/99, Tn-18-4/99) with thin layer of cherty argillite (Tn-18-3/99). Abundant organic matter, scattered sulfides (1-2%) and quartz silt (up to 7%), and rare thin-shelled brachiopods are characteristic. Unit thickness is 0.42 m.

7. Cross-bedded wackestone (Tn-19) containing scattered sulfides (up to 10%), abundant organic matter, conodonts, foraminifers (Chernyshinella glomiformis Lip., Septibrusina kraitica Lip., Archaeophaera spp., Parathuraammina spp. among others), ostracodes (Giptohexinella spiralis, Armilla uralia Sobolev), bryozoans, crinoids, and radiolarians. The bed has a sharp wavy base. Fossils are strongly reworked, some of
the conodont elements (Pa elements of *Palmatolepis gracilis* group) come from the *praesulcata* conodont zone (uppermost Famennian). This bed probably has a turbidite-like origin. The bed thickness is about 0.05-0.07 m.

Figure 1. Location of the Konstantinov Creek section.
8. Pack wackestone (Tn-20) containing organic matter, sulfides (1-2%), crinoids, radiolarians, recrystallised foraminifers (Archaesphaera spp., Parathurammina spp. among others), conodonts, brachiopods, ostracodes, scolcodonts, algae (Issenella sp.), and rare gastropods. Conodonts and some other fossils are reworked. Unit thickness is 0.2 m.

9. Unit of cherty argillite and chert alternation (Tn-20-1/99 – Tn-21-1/99). Argillite content increases upward. The rocks contain radiolarians, conodonts, fish remains, and ostracodes. Unit thickness is about 4 m.

Conodont distribution is shown in the text table 1. Two versions of the conodont zonation can be recognised in the boundary interval: regional zones and European “standard” ones. Regional zonation comprises the following zones (in ascendant order): Siphonodella duplicatai zone (units 1 and lower part of the unit 2) and Siphonodella quadruplicata zone (upper part of the unit 2 and units 3-9). European “standard” zones are recognised as the following: upper part of the duplicata zone (units 1 - 3), sandbergi zone (units 4 - 6), and lower part of the crenulata zone (units 7 - 9).

Faunal change in the boundary interval was interpreted to be caused by a Mid-Tourainian ecological event (Becker, 1993; Zhuravlev, 1998). The event interval comprises the uppermost part of the Siphonodella duplicata zone and the lower part of the Siphonodella quadruplicata zone, and is marked by a weak radiation in foraminifers (chernyshinellids) and by an extensive radiation in conodonts. A number of siphonellids, and pseudopolygnathids appear at this interval.

The abundant and characteristic post-event conodont fauna has good potential for correlation of the Mid-Tourainian boundary in deep-water facies both in the Northern Urals and worldwide.

This work was partly supported by RFBR grant # 99-05-65290 and by personal Palsirp grant (1997) to A.V.Zhuravlev.

References

<table>
<thead>
<tr>
<th>Regional conodont zones</th>
<th>S. duplicata</th>
<th>Siphonodella quadruplicata</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Standard” conodont zones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples</td>
<td>duplicata</td>
<td>sandbergi</td>
</tr>
<tr>
<td>Bispaphodus stabilis</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bispaphodus sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Eotaphrus bullyncki</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eotaphrus simplex</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Polygnathus communis communis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygnathus communis carinatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygnathus inornatus subsp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygnathus inornatus inornatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygnathus distortus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Polygnathus lacinatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygnathus mehli</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygnathus proprius</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Polygnathus purus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygnathus symmetricus</td>
<td>aff</td>
<td>aff</td>
</tr>
<tr>
<td>Polygnathus spicatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygnathus vogesi</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pseudopolygnathus dentilineatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pseudopolygnathus fusiformis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pseudopolygnathus marginatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pseudopolygnathus nodomarginatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pseudopolygnathus oxypageus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pseudopolygnathus pinnatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Siphonodella cooperi</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Siphonodella crenulata</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Siphonodella duplicata</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Siphonodella duplicata sensu Hass</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Siphonodella isosticha</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Siphonodella lobata</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Siphonodella obsoleta</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Siphonodella quadruplicata</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Siphonodella sandbergi</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Siphonodella semichatovae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Siphonodella sulcata</td>
<td>cf</td>
<td></td>
</tr>
<tr>
<td>Siphonodella uralica</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

"Spathognathodus" crassidentatus

Table 1. Conodont distribution in the Konstantinov Creek section
A correlation of Carboniferous marine biozones of Argentina and Australia.

González, C. R. & Taboada, A. C.

Instituto de Paleontología, Fundación Miguel Lillo, Miguel Lillo 251, Tucumán (4000), Argentina. E-mail: fmlgeo@tucubs.com.ar

The widespread Carboniferous glaciation began around the late Viséan-early Namurian and extended into the early Westphalian (González, 1981; Roberts et al., 1995). During this epoch, endemic faunas developed in the periglacial seas of Gondwana. Marine deposits of western Argentina and eastern Australia show strong faunal similarities, suggesting open links between the basins of these regions.

Carboniferous faunas prior to the glaciation had cosmopolitan affinities; this is the case for the Protocones fauna of Argentina (González, 1994) and the Schellwienella burlingtonensis fauna of Australia (Campbell & McKellar, 1969; Roberts et al., 1993). Though these faunas do not show close affinities, they are assigned to the late Tournaisian and may be equivalent in part.

During the Carboniferous glacial period faunal assemblages of Argentina and Australia can be easily compared. The Levipustula levis fauna is probably the most conspicuous fauna associated with the Carboniferous glacial sediments of Gondwana. The base of the L. levis Zone in Argentina corresponds to the base of the Rugosoconetes-

Bulahdelia Zone, which contains species in common with the Rhipidomella fortis and Marginirugus burlingtonensis Zone of eastern Australia (Taboada, 1989). These faunas are assigned to the late Visean. New findings of significant fossils in the Rugosoconetes-Bulahdelia biozone (Taboada, 1997) include Chonetes s.s. and Tylotyris cf. planimidea Cvancara. These fossils occur 250 m above a horizon bearing the Notorhacopteris flora, which was previously thought to occur in much younger strata in Argentina. The top of the L. levis Zone has been argued not to extend beyond the top of the Namurian (Roberts et al., 1995), but an extension into the Westphalian has alternatively been proposed (González, 1981, 1990, 1993).

From the late Westphalian up to the end of the Carboniferous, that is to say in the interglacial period between the Carboniferous and the Early Permian, evidence of glaciation is absent in Argentina and Australia. Faunal affinities during this interval are not clear, but marine faunas appear to be more or less endemic in Patagonia and eastern Australia. In western Argentina two discrete assemblages occur: the Balakhonia-Geniculifera (Taboada, 1997, 1999) and the slightly younger Buxtonia-Heteralosia (González, 1993), both having clear links with faunas of warmer-water seas outside the Gondwana province.

References

Global cooling in the middle Carboniferous

M.V. Durante

Geological Institute
Russian Academy of Sciences
Pyzhevsky per.
7109017 Moskva
RUSSIA

Email: durante@ginran.msk.ru

It is known that the change from the rich and diversified cosmopolitan Early Carboniferous biota to the rather poor and differentiated Late Carboniferous one took place near the middle of this system. Floristic data analysis permits us to determine the stratigraphical position of the global cooling event which was responsible for the initiation of this biotic change.

Within Angaraland, the sudden disappearance of treelike endemic lepidophytes (mainly the genera Tomiodendron and Angarophylos) in the middle of the Kuznetsk basin Ostrogsky series have been regarded by Meyen (1969) as the result of strong cooling.

These lepidophytes were predominant in the early Carboniferous (Upper Tournaisian - Visean) flora of Siberia. Their anatomic features (manoxylic axes typical for tropical and subtropical plants) and facies constitution (the presence of red beds and bauxites) suggests a warm, rather arid Early Carboniferous climate with frostless winters.

The author agrees with Meyen's (1969) conclusion that the disappearance of treelike lepidophytes correlates with the strong cooling event, because the postlepidophytean flora was very poor, consisting mainly of some relics of the lepidophytean one. They are 1) problematical pteridosperm Abacanidium with cyclopteroid venation of pinnules and small seed of the Trigocarpus type 2) small-stem lepidophytes and 3) primitive Artopsids. This flora characterizes the upper part of the Ostrogsky series (the Kaezovsky suite) and their equivalents in central Angaraland and is replaced near the top of the Kaezovsky suite (middle Bashkirian) by the rather rich and diverse temperate Cordaitaean. Therefore the Kaezovsky time period was the coldest in the Carboniferous of Angaraland.

Meyen (1968) compared the Angaran arborescent lepidophytes extinction (Ostrogsky...
As we know, there is a rather big stratigraphic break between the two Carboniferous series (subsystems) in Russia and most parts of the North American platforms. This gap is very often regarded as the result of regression caused by glaciation due to the great cooling. It is difficult to agree with this argument because the Gondwana glaciation maximum didn’t take place at the mid-Carboniferous level, but near the Carboniferous-Permian boundary, when climate became warmer and more humid.

Therefore it is possible to observe that development of both extratropical floras are similar but not identical as in near-tropical regions. In contrast to the gradual transition of Carboniferous floristic assemblages of the Euromerian area, the development of extratropical floras were suddenly interrupted near the middle of the Carboniferous by strong cooling. As mentioned above, the existence of this cooling event is supported by 1) an extinction of warm-loving arborescent lepidophytes in Angaraland (“Ostrogskian episode”) and Gondwana and 2) an appearance of very poor extratropical floras (the Abacanidium one into Angaraland, the Nothorhachoperis flora in Gondwana), marked the cold period.

An exact determination of the cooling event age is a rather great problem. Inside the Kuznetsk basin (Angaraland) this event coincides with a last marine transgression at the beginning of the Kaezovsky time. The age of the endemic marine faunal horizon at this level has been interpreted variously (from Lower Carboniferous to Lower Permian), but according to recent data of V.G. Ganelin (personal communication) the Ostrogskian brachiopod assemblage is very similar to that of the lower part of the Magarsky horizon (Uppermost Visean) of the North-East of Russia.

The Gondwana floristic change has nearly the same age. According to Morris (1985) the Lepidodendron flora of Eastern Australia disappeared in the Uppermost Visean. Retallack (1980) also determined the age of this event as Uppermost Visean-Lowermost Namurian.

This data suggests that the global mid-Carboniferous cooling event did not coincide with the recently defined Mid-Carboniferous boundary.

Is cuticular functional-carbon biochemistry genetically dependent in Carboniferous pteridophyllous foliage?

Erwin L. Zodrow¹, and Maria Mastalerz²

1. University College of Cape Breton, Sydney, Nova Scotia
2. Canada, B1P 6L2. E-mail: ezodrow@uccb.ns.ca

Wagner, and possible taxonomic significance was suggested. Particularly, *M. scheuchzeri* showed more abundant ester and hydroxyl groups than the other two species. That work is now followed up by the investigation of infrared spectra (FTIR) of cuticles from a larger number of species, preserved in compression specimens. Included in the FTIR analyses that are currently carried out are pteridophyllous species whose taxonomy is well charted and generally have biostatigraphic significance: sphenophyta sensu lato (*Sphenopteris brauniartii* Stur, *S. delicatula* Kidston non Sternberg, and *S. neuropteris* (Boulay), pteridosperms (*Odontopteris cantabrica* Wagner, *Marianopteris nervosa* Brongniart, *Neuropteris flexuosa* Sternberg, *Retiulopteris mengenii* (Eichwald), and pteropodid *Pecopteris assimilis* Brongniart. Some specimens are additionally preserved by the process of natural maceration; foliage preserved by this process resembles cuticles obtained by chemical maceration from the compression foliage. Natural maceration is not only relevant for the pteridosperm foliage, but also for cordaites leaves (Zodrow et al., 2000) and cordaitian fructifications, pteropodid fructifications, in sphenophylls, and in certain lycophytes specimens. It thus appears that natural maceration is a pervasive preservation process whose palaeoenvironmental significance is, however, unknown. It is thus warranted to study available naturally macerated cuticles of the above-mentioned species from the chemical (FTIR, py-GC/MS) viewpoint in order to help delineating diagenetic influences on the 300-million year old fossil cuticle. This knowledge is indispensable in the study of potential foliage chemotaxonomy.

References

In situ pectopterid microspores from near the Westphalian D- Cantabrian Boundary in Sydney Coalfield, Nova Scotia, Canada

Erwin L. Zodrow¹, Jiri Bek², and Josef Psenicka³

1. University College of Cape Breton, Sydney, Nova Scotia,2. Canada, B1P 6L2. E-mail: ezodrow@uccb.ns.ca

2. Institute of Geology, Czech Academy of Sciences, Rozvojova 135, 165 00 Prague 6, Czech Republic. E-mail: mrbean@gli.cas.cz

3. Department of Paleontology, West-Bohemian Museum, Kopeckeho sady 2, 301 36 Pilsen, Czech Republic. E-mail: psenda.paleobot@iol.cz.

Bell (1938, 1944, 1962) studied pectopterid foliage from the Canadian Carboniferous coalfields in
Nova Scotia, New Brunswick, and Newfoundland without publishing on the in situ microspores (<200 m) of the fertile foliage, although he identified some of the fructification genera. Over the years, ELZ has collected over 950 pteridoid specimens from the roof rocks of coal seams that are stratigraphically near the Westphalian D - Canariabian boundary in the Sydney Coalfield from which W.A. Bell could not have collected in his day for lack of exposure through operating coal mines. About 800 of the specimens are sterile and classified by concepts of form species as:

Pecopteris abbreviata
Brongniart, P. acacida Bell, P. arborescens Schlothelm, P. clarkii Lesquerex, P. cyathia Schlothelm, P. hertii Bell, P. lamianiana Heer, P. micromonitii Artis, P. miltonii Brongniart, P. pectinata Bertrand, P. plumosa (Artis) dentata
Brongniart, P. polymoppa Brongniart, P. unitus Brongniart, and P. stelliformis Bell.

The common northern European forms P. hemitelioides and P. pennaeformis, and most, if not all, of the Spanish pteroides, are not recorded from the Sydney Coalfield (Zodrow, 1990), nor from the Canadian Carboniferous in general. On balance, the Canadian Carboniferous clearly shows paucity of [foliar] pteroides taxa, in comparison with the French and German Carboniferous coalfields that show larger numbers of species (vide Corsin, 1951; Dalinval, 1960; Barthel, 1967).

Research in Carboniferous in situ pteroid microspores was done mainly by Doubinger (1961), Barthel (1967, 1976), Laveine (1969, 1970), Pfefferkiorn et al. (1971), Millay (1979, 1997), Coquel and Brousmiche-Delcambre (1996), and Lesnikowska and Willard (1997). The latest research in this field is by Bek (1998), and by Bek and Oplustil (1998). In 1999, we started a research project to investigate the potential of the in situ microspores of the 150 fertile pteroid specimens, with the purpose of filling an existing gap for the Euromerican Carboniferous in Canada. In particular, sporangia of the type Sceopteris (Zenker) Millay, Actitheca Brongniart, and Cyathoirchus (Watson) Mamay 1950 were isolated from some of the pteroid specimens, and their microspore contents were studied, emphasizing the importance of using SEM for the study of exine. Based on the results of the pilot study that contains a representative sample of fertile foliage (n=9), we propose to subdivide the microspores into 5 informal groups:

Group 1: tritele, densely microgranulate

Group 2: larger (18[9.2]25 m)
monolete to triletete microspinate Puntatosporites oculus Smith and Butterworth. Fructification: Sceopteris (Zenker) Sterile foliar representative: Pecopteris cyathia type

Group 3: small (17[19.2]23 m)
monolete microgranulate to microspinate microspores Puntatosporites pygmaeus (Ingrand) Potonie and Krempp. Fructification: Cyathoirchus (Watson). Sterile foliar representative: not yet determined

Group 4: scabrate to microspinate (21[23.9]29 m)
monolete microspores Puntatosporites minutus Ibrahim and P. marattioides Singh. Fructification: ?Sceopteris (Zenker). Note that these microspores are of the same type as those from Group 3, but differ by being larger in size and by having less densely sculptured exine. Sterile foliar representative: not yet determined, and

Group 5: laevigate to very finely scabrate (18[18.6]36 m)
monolete microspores Laevigatosporites minimus (Wilson and Coe) Schopf, Wilson and Bentall, L. minimus Dybova and Jachowicz, and Lastosporites minutus Bharadwaj. Fructification: Sceopteris (Zenker). Note that all of these spores are very similar to each other, differing only by their size (range 18-36 m), and shape. Sterile foliar representative: Pecopteris arborescens Schlothelm.

In conclusion, the pilot study indicates an overwhelming occurrence of Sceopteris in the Sydney samples which represent, however, differing pinnule morphologies and form species. However, the best sterile-fertile correlation we have so far is for Actitheca polymorpha Brongniart. Research is in progress to sort out the Sceopteris species to shed further light on the microspore populations and their sterile foliage.

References
Paleobiological interpretations and biostratigraphic problems

S.T. Remizova

Institute of Geology Komi Scientific Centre, Syktyvkar, Russia

The problem of uncertainty of biostratigraphic boundary establishment is caused mainly by the nature of a taxon’s evolution. Usually, in the paleontological annals, the evolutionary first appearances of new taxa are not precisely known. At the level of first appearance of a new taxon, the taxon is usually not abundant and has limited geographic distribution. New taxa are formed by gradualistic processes with formation of transitional forms from old to new. The first appearance of a taxon in the geological record usually does not indicate the time it actually evolved. This poses a problem if the first appearance is used as the basis for a zonal boundary. The majority of kinds of biostratigraphic zones recommended for use by the
Stratigraphic Code of Russia and International Stratigraphic Guide (Biozones, Range zones, Phyllozones or Lineage zones, Interval zones), rely on the first appearance of a taxon. The exceptions are Acme (Abundance) zones and Assemblage zones. The Acme zone characterising layers with the maximal distribution of a taxon, most adequately reflects existing reality, however, there is no precise criteria for boundary definition. Actually, if we consider the whole history of the phylogenetic development of a taxon, including phases of its origin, maximal development and extinction, all the above mentioned kinds of zones represent “Acme zones” or a combination of parts of these. The definition of the zonal boundaries, has only a theoretical sense, and in practice cannot be used with these kinds of zones. Of all the kinds of biostratigraphic zones, only Assemblage zones represent practical value with biostratigraphic researches, as the coexistence of several taxa provides correlation of any interval of a section to a particular biostratigraphic division. Other kinds of biostratigraphic zones are important for development of other scientific problems, such as the study of phylogenetic mutual relation of taxa, processes of a morphogenesis, laws of the evolution etc.

The above mentioned problems apply without exception to the definition of all biostratigraphic boundaries as exemplified by recent debate on criteria for recognizing the Middle-Upper Carboniferous (Moscovian-Kasimovian) boundary. Traditionally the appearance of the fusulinid genus Obsoletes has been used to define the base of the Upper Carboniferous. Detailed study of the genus (Remizova, 1992; Remizova and Remizova, 1998) showed, however, that Obsoletes evolved from Fusulinella through intermediate morphologic stages during the Late Moscovian. The difficulty of classifying these forms as advanced Fusulinella or primitive Obsoletes led to uncertainty in positioning the Middle-Upper Carboniferous boundary. Remizova (1992) proposed that these intermediate morphologies be grouped within the genus Praeobsoletes, and this concept was incorporated in the latest Russian text on Paleozoic foraminiferal taxonomy (Rauzer-Chernousova et al., 1996). Other workers (e.g., Ginkel and Villa, 1999) united Praeobsoletes and Obsoletes with Protriticites, a position that is unjustified by practical or theoretical considerations. The former two genera are a natural association and could be combined, but Protriticites evolved from a different ancestry. Evidence suggests that the Praeobsoletes-Obsoletes and Protriticites lineages evolved in parallel, respectively, from Fusulinella schwagerinoides and Fusulinella bocki and that some similarities in morphologic characters are only coincidental in keeping with divergence from the same ancestral genus. Furthermore, the range of Protriticites spans the Late Moscovian-Early Kasimovian interval making it impractical for the genus to define the Middle-Upper Carboniferous boundary.

References

Ginkel, A.C. and Villa, E., 1999, Late Fusulinellid and early Schwagerinid foraminifera: relationships and occurrences in the Las...
Figure 1. The scheme of phylogenetic development of some *Fusulinoida* (after Remizova & Remizov, 1998):

1 - *Fusulinella*: 1a - *F. bocki* Group; 1b - *F. schwagerinoides* Group; 1c - *F. colania* Group;

A-D - Order *Fusulinidae*:
A - Family *Profusulinellidae*.
B,C,D - Family *Fusulinellidae*:
B - Subfamily *Fusulinellinae*
C - Subfamily *Wedekindellininae*
D - Subfamily *Pulchrellinae*

E - Order *Schwagerinidae*.
The well-attended XIV ICCP in Calgary saw a large number of SCCS members in attendance. The SCCS held a full one-day session, chaired by John Roberts and Ian Metcalfe on Carboniferous Boundaries. At this session, nineteen oral presentations were made, including several reports on SCCS Project and Working Groups and one proposal for a new SCCS Project Group. For Project and Working Group reports see the separate section in this newsletter. Abstracts of the other presentations in the SCCS session are reproduced below with permission.

In addition to the SCCS session at the ICCP, a formal General Business Meeting of the SCCS was held in Earth Science 162, University of Calgary, Calgary, Canada on Thursday, August 19, 1999.

Brief Report:

The meeting was attended by about 50 members and visitors (including sixteen Voting Members). The minutes of the previous General Meeting held in Krakow, Poland were confirmed. The Chairman and Secretary then presented their reports. Reports of Project and Working Groups were deferred as they would be presented in the SCCS session later in the congress.

A short report on progress of the Carboniferous of the World was presented by R.H. Wagner including an outline of Volumes 4/5 which will cover North America and Europe outside the former U.S.S.R.

Discussion then took place on the current voting membership and on the geographic and discipline balance within the voting membership. A list of retiring members and potential new members proposed by the SCCS executive was discussed. Further potential voting members were nominated from the floor and it was also decided that the Secretary should request further nominations from the Voting Membership by a 4 October deadline.

A lengthy and at times heated and emotive discussion took place on the rank of the two primary divisions of the Carboniferous. An informal "straw" vote was eventually held on Sub-System vs. Series with 19 votes for Sub-System, and 19 votes for Series. This vote reflected the ongoing split within the SCCS regarding the ranks of the primary divisions of the Carboniferous as defined by the MCB. Chairman Roberts then informed the meeting that the SCCS executive would have a formal ballot of Voting members on this question in the near future.

Ian Metcalfe then reported that an initial ballot on the naming of the two primary divisions of the Carboniferous had supported Mississippian and Pennsylvanian but that the majority was insufficient for formal acceptance under ICS statutes. Chairman Roberts informed the meeting that a further ballot on this issue would be held as soon as the result of the ballot on the rank of these divisions had been held.

Next Field & General Meeting: Walt Manger proposed that the next Field and General Meeting be held in the North American Mid-Continent in the Spring of 2001, beginning and ending in St. Louis. It was proposed that the type Mississippian, type Morrowan and the Mississippian-pennsylvanian boundary would be examined. Dr. Manger undertook to organise this meeting. The proposal was unanimously accepted and Dr. Manger thanked for his offer to organise this meeting.
New Project Group on the Visean-Serpukhovian/Namurian Boundary: Dr N.J. Riley presented a short outline on the need and importance for a new project group on this important boundary. The proposal was accepted by the meeting and Dr Riley asked to convene a project group.

New Project Group on comparative Angara & Gondwana biostratigraphy: The Secretary informed the meeting that Dr Marina Durante from the Geological Institute, Russian Academy of Sciences, had proposed the formation of a new project group to study the post Visean successions of Angara and Gondwana. In both regions the post Visean successions cannot be correlated satisfactorily with sequences in the palaeotropical regions. After a short discussion, the meeting accepted the proposal for the new Project Group.

Ian Metcalfe
Secretary, SCCS

SCCS SESSION ABSTRACTS

CHEMOSTRATIGRAPHY OF THE MID CARBONIFEROUS BOUNDARY STRATOTYPE SECTION, BIRD SPRING FORMATION, ARROW CANYON, NEVADA, U.S.A. BRAND, UWE, Department of Earth Sciences, Brock University, St. Catharines, Ontario Canada L2S 3A1, ubrand@spartan.ac.brocku.ca, and BRENNLE, PAUL, 1 Whistler Point Road, Westport, MA 02790 U.S.A. Precisely located brachiopods and carbonate matrix and cements were used to delineate depositional and diageneric geochemical changes at the Mid Carboniferous (Mississippian-Pennsylvanian) Global Boundary Stratotype Section and Point (GSSP) within the lower Bird Spring Formation, Arrow Canyon, Nevada. Chemostратigraphic and isotopic trends reveal an overall more varied seawater chemistry for the latest Mississippian than for the early Pennsylvanian, although trace elements and stable isotopes from brachiopods indicate drastic fluctuations in water chemistry during the earliest Pennsylvanian. Several oxygen minima mark the Mississippian part of the section, followed first by rapid oxygen level changes close to (or across) the boundary and then by normal and constant conditions for the remainder of the Pennsylvanian. Mississippian water temperature fluctuated from 21 to 31°C; while for the Pennsylvanian it varied from 24 to 33°C. 87Sr/86Sr values are consistently lower in the Mississippian, and the rapid shift to higher and more invariant values at the base of the Pennsylvanian provides the most useful geochemical indicator to recognize the Mid Carboniferous Boundary on a global scale. This change toward higher strontium ratios, moreover, mimics a general trend throughout the Upper Paleozoic. Mississippian seawater appears to have been dominated by oceanic processes, while continental processes influenced Pennsylvanian seas, except for a more marine geochemical excursion during the Late Pennsylvanian (Virgilian). Key Words: Stable & Radiogenic Isotopes, Global Correlation

MOSCOVIAN-KASIMOVIAN TRANSITION IN NEVADA AND PROBLEMS OF ITS INTERCONTINENTAL CORRELATION DAVYDOV, VLADIMIR I., SNYDER, W. W., and SCHIAPPA, T. A. Pemmick Research Institute, Department of Geosciences, Boise State University, 1910 University Drive, Boise, ID, 83725, v.davydov@boisestate.edu The Early Pennsylvanian-earliest Pennsylvian carbonate shelf and ramp successions in Nevada contain an abundant and well preserved fusulinid fauna that provide critical data on fusulinid phylogeny. Present studies have focused particularly on the Moscovian-Kasimovian transition. In the western hemisphere this transition was studied mostly in the Midcontinent, where fusulinid faunas are quite endemic and therefore it is difficult to use this fauna for global correlation. In 1997 Wahlman et al. found primitive Protriticites and probably Proaebosoletes together with Bartramella bartrami, Plectofusulina, and several Beedelina species in latest Moscovian (mid-late Desmonesian) in Idaho, Nevada and Utah. They reported the first appearance of Triniticites about 60 m stratigraphically above this fauna. In most of the Western US, the basal Kasimovian is probably absent due to eustatic sea-level drop. In the Moscow Basin (Russia), Central Asia, and the Arctic this event is represented by an unconformity. In the Moscow Basin this unconformity is estimated of 0.5-0.6 Ma in duration. However, in Nevada Test Site (NTS) the succession (carbonate ramp) appears to lack this unconformity. At the NTS, above the beds with assemblage of Bartramella and primitive Protriticites there is a thin conglomerate bed that may represent the basal Kasimovian unconformity. Immediately above advanced Protriticites were recovered that are similar to those from Krevyaikian (L. Kasimovian) in the Moscow Basin; one sample contained Beedelina, Fusulinella and Bartramella together with Protriticites. The next higher stratigraphic assemblage is represented by typical schwagerinids with real keriotheca. Some of these forms belong to the genus Montiparvs and therefore could correlate with middle Kasimovian in the Moscow Basin. Conodont data from NTS region are necessary to test fusulinid correlation and particularly to provide precise correlation between the Great Basin and Midcontinent and globally with the Moscow Basin, Donets Basin Central Asia, Camic Alps, Cantabrian Mountains, and the Arctic.
A PENNSYLVIANIAN SYSTEM STRATOTYPE ENGLAND, KENNETH J. Retired, U.S. Geological Survey, 40236 New Road, Aldie, VA. 20105, WNUK, Christopher, Global Resources Information Group, 1050 17th Street N.W., Washington, D.C. 2036, e-mail JinnyEng@aoil.com The Pennsylvania System stratotype program was initiated by the U.S. Geological Survey in 1972 in consultation with an advisory committee of interested geologists from the state Geological Surveys, U.S. Geological Survey, academia, and industry. This committee designed a program to provide rock representative sections for the loosely defined Lower, Middle, and Upper Pennsylvania Series in the Appalachian basin. The most favorable locality proved to be in West Virginia, where Pennsylvania stratata extend continuously from the base of the system in the Pocahontas area northwestward to the top of the system in the Dunkard basin. During the next 10 years, Pennsylvania rocks in the study area were subjected to extensive lithostratigraphic, biostratigraphic, and depositional environment investigations that also included geologic mapping and core hole drilling projects. On the basis of these investigations, 14 overlapping component sections were selected to represent the Pennsylvania System. The proposed Pennsylvania System stratotype was presented to the international scientific community at the Ninth International Congress of Carboniferous Stratigraphy and Geology, held in the United States in 1979. Results of investigations were published in more than 60 papers, including abstracts, geologic maps, field trip guidebooks, bulletins, and professional papers. Recent publications report that a bed of spherules occurs near the gradational Mississippian-Pennsylvanian boundary.

PROPOSAL FOR DESmOINESIAN-MISSOURIAN STAGE BOUNDARY STRATOTYPE, A CANDIDATE FOR A GSSP HECKEL, P.H., Dept. of Geology, Univ. of Iowa, Iowa City, IA 52242, philip-heckel@uiowa.edu; BOARDMAN, D.R, School of Geology, Univ. of Oklahoma, Stillwater, OK 74078; BARRICK, J.E., Dept. of Geosciences, Texas Tech Univ., Lubbock, TX 79409 The Desmoinesian Stage, named from Midcontinent North America, is characterized by the conodonts Neognathodus, Idiognathodus delicatus and related species, and a troughed clade of Idiognathodus (at the top); by the fusulinids Wedekindellina and Beedleina; by diverse palynomorphs including Lycospora and Granaspores; by the ammonoids Goniotyphloceras and Wellerites; by the brachiopod Mesolobus; and by the sponge Chaetetes. The top of the Desmoinesian Stage is marked by the extinction of all these forms except a flat clade of Idiognathodus and a few stragglers of Lycospora. The Missourian Stage, named from the same region, is characterized by descendant flat species of the conodont Idiognathodus and the newly evolving troughed clade Streplognathodus; by the fusulinids Eouveringella, Triticites, and Kansanella; by low diversity ferns and other non-Lycocodi palynomorphs; and by the ammonoids Pennoeceras and Parashumardites. The rocks of both stages comprise a succession of glacial-eustatic marine cyclothems separated by exposure surfaces and paleosols across the northern shelf of the basin, but most of these subaerial horizons disappear basinward to the south, where more of the succession was continuously marine across the lowstand horizons. The banks of a small creek in northern Nowata County, Oklahoma, expose a succession of marine units from the top of the Desmoinesian into the lower 3 major cyclothems of the Missourian. Here 1 sulciferus, a descendant of 1 delicatus, occurs in the base of the South Mound Shale, and is joined 2 m upward by its descendant 1 eccentricus in the darker shale bed that represents the basinal
facies of the Exline cyclothem, which contains limestone northward on the shelf. The conformable base of the Exline cyclothem at this locality defines the Desmoinesian-Missourian Stage boundary. This boundary is recognized in the Exline-equivalent Scottsville Limestone in the Illinois Basin, but signifies a greater hiatus at the base of equivalents of higher Missourian cyclothsms at places that were position-ed higher on the shelf at that time, such as the Appalachian Basin.

PROPOSAL TOWARD CONSENSUS ON NAMES AND RANK OF TWO BASIC SUBDIVISIONS OF CARBONIFEROUS SYSTEM HECKEL, P.H., Dept. Geology, Univ. Iowa, Iowa City, IA 52242, philip-heckel@uiowa.edu; VILLA, ELISA, Depto. Geologia, Univ. Oviedo, 33005 Oviedo, Spain Arguments for 'Lower' and 'Upper' for the two basic divisions of the Carboniferous System involve traditional use in most of the world. Arguments against 'Lower' and 'Upper' involve the serious ambiguity of traditional use in published literature around the world because traditional boundaries of particularly 'Upper Carboniferous' vary greatly in different parts of the world, especially where the tripartite subdivision is used. Arguments for 'Mississippian' and 'Pennsylvanian' involve 1) consistent usage within North America, because of a disconformity between them in most places, and 2) coincidence of the ratified Middle Carboniferous boundary in Nevada with the recognized paleontological change across the elsewhere disconformable boundary. Because these names can thus be used consistently and precisely elsewhere in the world, the scientifically best choice for the two subdivisions of the bipartite Carboniferous is 'Mississippian' and 'Pennsylvanian'. Nevertheless, because the Mississippian is the lower part, and the Pennsylvanian is the upper part, of the Carboniferous System, the terms 'Lower' and 'Upper' will still be used. However, if they are used formally with initial capital letter, they must be defined in future work by using Mississippian and Pennsylvanian accompanying them in the article or on the diagram in which they appear. Arguments for 'series' for the two basic subdivisions involve tradition. Arguments for 'subsystem' include: 1) lengths of each within the range of other Paleozoic systems, 2) their long-term recognition as systems in North America, and, most importantly, 3) their long-standing global recognition of being distinctly different from one another, more so than series in any other system; this difference relates to Gondwanan glacial-influenced stratigraphy and biotic endemism during the Pennsylvanian (Upper Carboniferous). 'Subsystem' is the most appropriate rank for the basic subdivisions of the Carboniferous System, both to recognize their significant system-scale differences in most of the world and to maintain more options for further subdivision as the work of the SCCS continues.

PROPOSAL TOWARD CONSENSUS ON FURTHER SUBDIVISION OF THE TWO SUBSYSTEMS OF THE CARBONIFEROUS SYSTEM HECKEL, P.H., Dept. Geology, Univ. Iowa, Iowa City, IA 52242, philip-heckel@uiowa.edu; VILLA, ELISA, Depto. Geologia, Univ. Oviedo, 33005 Oviedo, Spain Continued usage of regional stages relates partly to the difficulty of determining accurate correlation among them, particularly in the Pennsylvanian (Upper Carboniferous) Subsystem when biotic endemism was greatest. It is now apparent that the strong glacial eustatic control has resulted in many disconformable boundaries throughout the entire Pennsylvanian, particularly in high-shelf cratonic settings where the regional stages have been established. This and the endemism make it very difficult to select a GSSP near the base of any currently named regional stage. More study is needed in basinal areas continuous and correlatable with the areas where the regional names are derived. It is possible that appropriate boundaries for some regional stages will not be globally correlatable, and also that globally correlatable boundaries will not be close to boundaries of any current regional stages. Therefore, we propose a working procedure that regional stage names and rank be retained, but series rank be reserved for globally correlatable units that will emerge with further effort. Initially, geographic names should be avoided for series, in favor of more neutral terms (Lower, Middle, Upper) for series of the Mississippian and Pennsylvanian subsystems. Basal boundaries for the Middle and Upper Series can be selected wherever an appropriate GSSP is defined. In the meantime, boundaries of regional stages should be selected to stabilize regional terminology, and any of these can be a candidate for a series GSSP. Regional stage names can continue in use where the endemic biotas allow easy correlation, but the structure will be in place for ultimate designation of globally correlatable series for the subsystems. It is possible that western European series names and Russian stage names (if raised to series) could ultimately be used as subequal alternative series names, if GSSPs are acceptable close to traditional boundaries: e.g., Tourmaisian, Visean for Lower and Middle Mississippian; Westphalian, Stephanian for Middle and Upper Pennsylvanian; and/or Serpukhovian, Bashkirian, Moscovian for Upper Mississippian, Lower and Middle Pennsylvanian.

THE CONODONT SUCCESSION AT THE MID CARBONIFEROUS BOUNDARY, ARROW CANYON (NEVADA, USA): IMPLICATIONS FOR INTERCONTINENTAL CORRELATION LANE, H. RICHARD, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, USA, hrlane@NSF.gov, BRENCLE, PAUL L., 1 Whistler Point Road, Westport, MA 02790, USA, and RICHARDS, BARRY C., Geological Survey of Canada, 3303-33rd St. NW, Calgary, Alberta T2L 2A7, Canada Arrow Canyon, the Global Stratotype Section and Point (GSSP) for the Mid-Carboniferous boundary, contains the most

Carboniferous Newsletter – Vol. 18 – 2000
continuous, fossiliferous succession known globally for this chronostratigraphic interval. The GSSP occurs near the middle of a 1.68 m thick limestone unit within the lower Bird Spring Formation at a position 82.9 m above the base of the underlying Indian Springs Formation. It is located at the evolutionary first occurrence of the conodont Declinognathodus noduliferus s.l. The stratigraphic interval from the basal Indian Springs to about 14 m above the GSSP contains a complete succession of four conodont zones from the Late Mississippian Adetognathus unicornis Zone up to the Early Pennsylvanian Idiognathoides simiatus Rhachistognathus minutus Zone. This succession, which can be recognized in other regions, appears to be missing in northern England (Stonehead Beck and Crowdbrook sections) where I. simiatus-R. minutus Zone conodonts found in the lowest Homoceras ammonoid zone overlie pre-A. unicornis Zone conodonts in the upper Eumorphoceras ammonoid zone. Therefore, the time represented by the A. unicornis to I. simiatus-R. minutus zonal interval in Arrow Canyon cannot be recognized in beds containing the Eumorphoceras to Homoceras transition of the British standard ammonoid zonation. A hiatus and/or several metres of largely unfossiliferous beds separate these ammonoid zones suggesting that the standard ammonoid succession in northern England is incomplete and that these sections are unsuitable for a global boundary reference standard. The section at Arrow Canyon is composed of glacio-eustatic, transgressive-regressive sequences. A thin paleosol occurs at the top of the sequence containing the Mid-Carboniferous boundary and at the top of the sequence immediately below. Unconformities developed on these paleosols represent minor hiatuses because they occur within conodont zones.

MOSCOVIAN STAGE OF THE MOSCOW SYNECLISE (RUSSIA) MAKHLINA, MARIYA KH., Geological Institute of the Russian Academy of Sciences, Pyzhevsky, 7, 109017 Moscow, Russia. E-mail goreva@ginran.msk.su, ALEKSSEEV, ALEKANDR S., DepaT. Paleontology, Geological Faculty, Moscow State University, 119899 Moscow, Russia, GOREVA, NATALIA V., ISAKOVA, TATYANA N., Geological Institute of the Russian Academy of Sciences, Pyzhevsky, 7, 109017 Moscow, Russia. The Moscovian Stage was established by S.N. Nikitin in 1890 in the Moscow Basin, and in 1926 A.P. Ivanov subdivided it into four horizons (Vereya, Kashira, Podolsk, Myachkovo). After 70 years of comprehensive study of these horizons, their characters and worldwide distribution allows their consideration as substages (Vereyan, Kashirian, Podolskian, Myakhovian). Each substage is characterized by zones of fusulinids, conodonts and other fossil groups. In the years 1994-1998 stratotypes of these substages were reinvestigated for the Moscow Syncline. Analysis of all available lithological and paleontological data with the use of paleoecological and biotaxonomical methods enabled detailed subdivision of the local stratigraphic scheme in the Moscow Syncline. Detailed investigations, in the type area, resulted in the recognition of 13 formations and 28 members. The Vereyan Substage (16-45 m) composed of variegated terrigenous rocks with subordinate limestone layers. Three formations (Aljutovo, Skniga, Ordynka) are recognized within this substage. The Kashirian Substage (35-90 m) is characterized mainly by limestones, micrograined dolomites variegated clays and marls are subordinate in thickness. It is subdivided into four formations (Tsnia, Nara, Lopasnya, Smedvya) and 12 members. The Podolskian Substage (22-66 m) differs from the Kashirian in the prevalence of bioclastic limestones and in a considerable decrease of dolomite and variegated clayey rocks. Three formations (Vaskino, Ulitino, Stshurovo) and 8 members are recognized within this substage. The Myakhovian Substage (10-44 m) is composed of mainly bioclastic limestones and unlike the Podolskian, it contains lesser amounts of clayey rocks and dolomites. These are the Novlinskoe Group (two formations) and Peski Formation and 8 members in the proposed local scheme.

NEW HORIZON (SUBSTAGE) OF THE GHZHELIAN STAGE MAKHLINA, MARIYA KH., ISAKOVA, TATYANA N., Geological Institute of the Russian Academy of Sciences, Pyzhevsky, 7, 109017 Moscow, Russia E-mail, isakova@ginran.msk.su The Carboniferous and Permian boundary corresponds to the boundary between the Ghzhelian and Asselian Stages. This occurs between the Daixina bosbytasionis D. robusta and Sphaerocochelina vulgaris-S. fusiformis Zones. The boundary stratotype was established in the Aidarash section, South Urals. This means that the Daixina bosbytasionis-D. robusta Zone has to be included in the Ghzhelian Stage of the Russian Platform (1992) and changes the position of the upper boundary of the Ghzhelian. This necessitated the introduction above the Noginskian a new horizon corresponding with the Daixina bosbytasionis-D. robusta Zone in the Moscow Basin. The new horizon proposed for the Ghzhelian and named the Melekhovo Horizon (Melekhoian Substage) is traceable in boreholes and in quarries in the Moscow Basin. The horizon consists of dolomitized limestones and secondary dolomites. The rocks are cavernous, calcitized, and partially silicified and include chert layers and molds of fusulinids of the Daixina bosbytasionis-D. robusta Zone. Two elementary rhythms composed mainly of bioclastic, highly dolomitized limestones, can be recognized in the lower half of the Melekhoian. Each of the rhythms is terminated by laminated dolomite or claystone. Its upper half appears to consist of two rhythms as well. The base of the lower rhythm is limestone with chert intercalations and the top is marked by limestone with clay interlayers. The upper rhythm is represented by its basal bed alone and consists of limestone. The total thickness of the horizon is 13 m. The lower boundary of the Melekhoian is distinctly traceable in the succession of the rocks and correlatable on the
basis of its fusulinid fauna. Its lower boundary is defined by a change in the fusulinid assemblage from the Daixina sookensis Zone (Noginskian) to the Daixina bosbytawanensis-D. robusta Zone (Melekhovian). The last fusulinid assemblage includes Daixina robusta Raus., D. vozghalenis Raus., D. pompusa Sjøm., D. insolita Isak., Praepseudofusulina diligens Isak., Pseudofusulina kljasnica (Sjøm.), P. paraanderssoni Raus., Trinitatus ex gr. plummeri Dunb. et Condra.

INTEGRATED LATE KINDERHOOKIAN (MISSISSIPPIAN-LOWER CARBONIFEROUS) AMMONOID, BRACHIOPOD AND MIOCPE STRATIGRAPHY, UPPER CUYAHOGA-LOWER LOGAN FORMATIONS, OHIO, UNITED STATES MANGER, W.L., Dept. of Geosciences, Univ. of Arkansas, Fayetteville, AR 72701 USA; KOLLAR, A.D., Service of Invertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, PA 15213 USA; CLAYTON, G., Dept. of Geology, Trinity College, Dublin 2, Ireland; OWENS, B., Dept. of Geology, Univ. of Sheffield, Sheffield, S1 3JD United Kingdom; e-mail <wmanger@comp.uark.edu> The Cuyahoga and Logan fms of eastern Ohio reflect a north-westward-trending deltaic regime. Pebble-bearing sandstones formed distributary systems coeval with interdistributary bays and delta front-upper shore face siltstones and shales, the latter preserving marine fossils, including the ammonoids Protocostatus lyonii and Muensteroceras. Previous age assignments based on ammonoids have fallen on either side of the Kinderhookian-Ohioan Series boundary fomenting nearly 50 years of controversy that can be resolved by integration of biostratigraphic data from articulate brachiopods and mioceopods. The Cuyahoga-Logan articulate brachiopod assemblage consists of 33 species representing 27 genera, with 16 genera and species occurring with ammonoids at the Sciotoville Bar locality, southern Ohio. Restudy (Kollar) has assigned a late Kinderhookian age to this assemblage based on Caenophalina logani, Camarophorella mutabilis, Hamburghia flora, and Rhytihynchus raticostatus. The latter two species are restricted to the Kinderhookian Series, and no species are exclusively Ohioan. Diverse Dinantian mioceopods assemblages are dominated by Yallatisporites spp. and Spelaeotritelles spp. and have been recovered from upper Cuyahoga lower Logan strata in the vicinity of the Sciotoville Bar locality and the type area of the Wooster Member, northeastern Ohio. The assemblages represent the middle Tournaisian Spelaeotritelles pretiosus-Raistrickia clavata (PC) Miospore Biozone of western Europe equivalent to the middle to early upper Courcyean Stage (late Tn2 and early Tn3) thus supporting a late Kinderhookian age for the upper Cuyahoga-lower Logan Formation. Placement of the boundary in the Ohio sections remains equivocal.

SEQUENCE STRATIGRAPHY AND SEDIMENTOLOGY OF THE MID CARBONIFEROUS BOUNDARY AT THE STRATOTYPE SECTION, ARROW CANYON, NEVADA RICHARDS, BARRY, C., Geological Survey of Canada, 3303-33 St. NW, Calgary, Alberta T2L 2A7, and LANE, H. RICHARD, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230, USA The Mid-Carboniferous Global Stratotype Section and Point (GSSP) lies in a 1.68 m thick limestone unit in the Chesterian to Morrowan lower Bir Spring Formation. The lower Bird Spring and underlying Chesterian Indian Springs Formation comprise typical carbonates and siliciclastics that constitute a second-order sequence containing multiple high-order transgressive-regressive (TR) sequences of largely glacio-eustatic origin. Five, third- to fourth- order TR sequences comprising neritic to intertidal ramp carbonates overlain by relict paleosols (granular to nodular beds), are recognized in a 15.5 m thick section of the lower Bird Spring containing the GSSP. The limestone unit containing the GSSP constitutes a representative example of these sequences. A surface of transgressive ravinement, developed on the nodular paleosol of an underlying TR sequence, defines the base of the sequence. Shallow-neritic, pelmatozoan grainstone constitutes the transgressive systems tract (TST). The boundary between the TST and regressive systems tract (RST) is placed at the transition from pelmatozoan grainstone to mixed-skeletal grainstone and brachiopod packstone; an intervening maximum flooding surface is not evident. The GSSP, 68 cm above the base of the sequence, lies within the TST/RST transition, an interval recording essentially continuous marine deposition. Brachiopod wackestone in the RST passes upward into a paleosol comprising limestone lithorelicts and argillans recording deep, humid-climate weathering of open marine limestone subsequent to a sea-level drop. The paleosol (C soil horizon) is unconformably overlain by peritidal conglomerate representing the TST of the overlying sequence. Beds on either side of the unconformity are within the same conodont zone. All of these high-order sequences lack restricted-shelf carbonates. The top of the sequence containing the GSSP is a first-order boundary defining the top of the regionally-developed, second-order sequence comprising the Indian Springs and lowermost Bird Spring. The first-order boundary also marks the craterward-expanding hiatus between the Kaskasia and overlying Absarokan tectonostratigraphic sequences.

THE VISEAN-NAMURIAN BOUNDARY IN EASTERN AUSTRALIA ROBERTS, JOHN, School of Geology, University of New South Wales, Sydney, NSW 2052, Australia, E-mail J.Roberts@unsw.edu.au Precise recognition of the Visean-Namurian boundary within eastern Australia cannot be made from palaeontological evidence because the boundary coincides with a sudden deterioration of climate and the onset of glaciation. Tournaisian and Visean faunas were mainly cosmopolitan, warm water assemblages.
widl some provincialism (Visean conodonts), allowing correlation with the international timescale by means of sparse ammonoids, conodonts (Tourmaisian and parts of the Visean) and brachiopods. A significant drop in diversity of faunas, especially brachiopods, took place in the latest Visean Marginiragus barringtonensis Zone. The Visean-Namurian boundary appears to be located at the top or within the uppermost parts of the M. barringtonensis and the Gnathodus texanus-G. billatus Zones. The latter represents the uppermost occurrence of conodonts within the autochthonous Australian Carboniferous succession. The succeeding Leptisuscalis levii Zone, the first Gondwanan assemblage, contains few species which range up from the Visean, as well as several brachiopods which may be related to forms from the cold water Baikal region of Russia. The early Namurian ammonoid Cravenoceras is known from a single locality within the zone. In NSW, the age of the L. levii Zone can be inferred from SHRIMP zircon dates to be younger than 328.5 ± 11.4 Ma (Paterson volcanics, an apparent equivalent of part of the M. barringtonensis Zone) and older than 321.9–3.8 Ma (overlying Johnsons Creek Formation). The zone may be younger in Queensland where conditions remained marine, as opposed to a change to non-marine NSW. In Queensland, the L. levii Zone is succeeded by the Auriculospina levii Zone, which cannot be dated. Key Words: Visean-Namurian boundary - eastern Australia

THE CARBONIFEROUS OF THE WORLD' PROJECT WAGNER, RH., Jardín Botánico de Cordoba, Avda de Linneo s/n, E 14004 Cordoba, Spain, crlwagro@uco.es; WINKLER PRINS, C.F., Nationaal Natuurhistorisch Museum, Postbus 9517, NL 2300 RA Leiden, The Netherlands; GRANADOS, L.F., Instituto Tecnologico Geominero de Espa- ca, Rios Rosas 23, E 28003 Madrid, Spain. The Carboniferous of the World' is an ongoing project of the IUGS Subcommission on Carboniferous Stratigraphy, which started in the 1980s on the initiative of Carlos Martinez, Scientific Secretary of X ICC, held in Madrid 1983. Its aim is to produce regional summaries of Carboniferous stratigraphy and palaeontology in a palaeoecological context that is linked to the recognition of palaeotectonic and palaeo climatic areas. Although regional chronostratigraphic classifications are given, the overall format was adopted of lower, middle and upper Carboniferous major units, following the recommendation of SCCS to use these informal units provisionally. This recommendation has never been revoked, but SCCS has subsequently adopted a subdivision of the Carboniferous System into lower and upper subsystems. A vote by the SCCS titular membership has sanctioned the use of Mississippian and Pennsylvanian for these subsystems, thus avoiding the problems involved with the terms Lower and Upper Carboniferous, which have been used in so many different ways that a qualifying statement is required for any reference to these terms today. Of course, Mississippian fits the lower Carboniferous, and Pennsylvanian combines middle and upper Carboniferous, so the newer emphasis on a basic subdivision into two major units can be accommodated within the framework adopted when 'The Carboniferous of the World' was conceived. Three volumes have been published, covering most of the world, but leaving Central and North America as well as Europe West of the ex-USSR and Asia Minor still to be dealt with. Since these are the most classical areas for Carboniferous studies, with an immense amount of information, two additional volumes are envisaged. The publication schedule has to be a flexible one, but it is hoped to avoid excessive delays such as the one experienced with volume III (The former USSR, Mongolia, Middle Eastern Platform, Afghanistan, & Iran), which needed extensive editing.

THE ASTURIAN STAGE: A PRELIMINARY PROPOSAL FOR THE DEFINITION OF A SUBSTITUTE FOR WESTPHALIAN D WAGNER, RH., Jardín Botánico de Cordoba, Avda de Linneo s/n, E 14004 Cordoba, Spain, crlwagro@uco.es; VILLA, E., SANCHEZ DE POSADA, L.C., MARTINEZ CHACON, M.L., FERNANDEZ, L.P., Departamento de Geologia, Universidad de Oviedo, c. Arias de Velasco s/n, E 33005 Oviedo, Spain; WINKLER PRINS, C.F., Nationaal Natuurhistorisch Museum, Postbus 9517, NL 2300 RA Leiden, The Netherlands. In the West-European chronostratigraphic classification the Westphalian D Stage is the only subdivision of the Westphalian Series which has not yet received a formal stage name combined with an adequate (boundary) stratotype. The original definition of Westphalian D was based on subsurface sections in Lorraine (France), which show exclusively terrestrial deposits and are obviously unsuitable for stage definition. The mixed marine and terrestrial successions of the Cantabrian Mountains (NW Spain) would form a suitable alternative. A boundary stratotype is proposed in the Canales section at Riosa in the Central Asturian Coalfield, hence the name 'Asturian Stage'. This section contains the fossil floras that allow correlation with Saar-Lorraine and elsewhere. It is also quite reasonably correlated with more marine sections to the East. Fusulimid foraminifera, brachiopods and other marine faunas can thus be brought to bear and are presented in summary range charts to show their variety. These successions do not go beyond mid-Westphalian D, but the upper Westphalian D is well represented in the Guardo Coalfield in the province of Palencia, further ESE in the Cantabrian Mts. This is the area in which the boundary stratotype of the Cantabrian Stage (lowermost Stephanian) has been established, which fixes the top of Westphalian D. Outcrop conditions are generally good and about 5000 m of strata are involved altogether. This is still a preliminary proposal aimed at focusing discussion and unifying the efforts necessary to document further the biostratigraphic and sedimentological data that will provide an
even more solid foundation for the recognition of the Asturian Stage and its proposed stratotype. Key Words: Westphalian D, Asturian Stage

THE FIRST ARGENTINE SYMPOSIUM ON THE UPPER PALEOZOIC
Anillaco, La Rioja Province, Argentina, May 1999

Since the XII International Congress on Carboniferous and Permian Stratigraphy held in Buenos Aires, there were no meetings held in Argentina concerning these periods. The 1st Argentine Symposium on the Upper Paleozoic was organized in May 1999 in Anillaco, a little town in La Rioja province (1350km from Buenos Aires city). The CRILAR (Regional Research Center of La Rioja) successfully hosted the meeting. The sessions were dedicated to the memory of the late Dr. Roberto Caminos, an active, talented scientist and kind men, who greatly contributed to the knowledge of La Rioja geology. Thirty participants from different Argentinian institutions and from Brazil covered diverse subjects. These studies focused mainly on detailed biostratigraphic analyses and research of Early Carboniferous deposits, which recently acquired relevance when their large geographic distribution in the NW of Argentina was known. After two days of interesting discussions the assistants participated in a field trip to representative sections of the Carboniferous and Permian in the Pagoano Basin. An Abstracts volume was distributed during the meeting (it will be published also in Ameghiniana, the Review of the Argentine Paleontological Association). The next meeting is scheduled for the year 2001 and will be held at the Paleontological Museum "E. Feruglio", at Trelew City, Chubut province. We hope that this new impulse will resume scientific activities related to the Late Paleozoic in Southern South America. Silvia Césari and Pedro Gutiérrez.

Silvia Césari
Dto. Geología
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires.

NEW BOOK ANNOUNCEMENT

Palaeozoic Palynostratigraphy of Saudi Arabia

Edited by Sa'id Al-Hajri & Bernard Owens

Containing 13 papers, 231 pages including 41 colour plates

Published by GeoArabia
ISBN 99901-04-01-8

All enquiries should be addressed to:

Gulf PetroLink, P.O. Box 20393, Manama, Bahrain.
Tel: (973) 214 881, Fax: (973) 214 475, E-mail: geoarabi@batelco.com.b
9th Coal Geology Conference

June 25-29, 2001
Faculty of Science, Charles University,
Prague, Czech Republic

For details contact:

Prof. Jiri Pesek
Faculty of Science, Charles University
Albertov 6, 128 43 Prague 2
Czech Republic
Phone & Fax: +420-2-21952438
Fax: +420-2-24921736
E-mail: oplustil@natur.cuni.cz

PaleoForams 2001

August 20-24, 2001
Middle East Technical University,
Ankara, Turkey

For details contact:

Demir Altiner
Department of Geological Engineering
Middle East Technical University (ODTU)
06531 Ankara, Turkey
Phone: +90-312-2102680/+90-312-4275195
Fax: +90-312-2101263
E-mail: altiner@tubitak.gov.tr/demir@metu.edu.tr

JOSEPH BOUCKAERT (1930-1999)

Jos Bouckaert died on December 6th, 1999. He was born in Aalst (Belgium) and started his career working for the Association for the study of the geology and stratigraphy of the Silesian. He graduated as Doctor in Sciences with a dissertation on Namurian goniatites. In 1959, he joined the Geological Survey of Belgium, becoming the director in 1986 until he left in 1993. During his career, Jos Bouckaert was active in many fields of the Earth Sciences. The first years of activity were mainly devoted to the geology of the upper Mississippian-lower Pennsylvanian around Namur. Then, discovering micropaleontology, he became one of the pioneers of conodont stratigraphy in Europe. He published first, with Ziegler and Thorez, a memoir on Famennian conodonts (1965). Later, he published another on Namurian conodonts with A. Higgins (1968). During the Golden sixties, Belgium started a lot of big civil works. During that period, Bouckaert was an applied geologist for water dams, locks, speedroads etc. which were build in the Belgian Ardennes. At the same time, he produced the Ardenne sheet of the Mineral deposits map of France (1964) and, with P. De Bethune, a geological map of Belgium and surrounding countries (1966). Together, with Streel and Conil, he created a team of young geologists who re-investigated the classical sections from the Palaeozoic. They organized the International symposium on micropaleontological limits from Emsian to Visean at Namur in 1974. Later, he erected, mainly together with Paproth and Bress, a new team specialized in paleogeographical reconstructions and which will elaborate a number of theories on the origin of hydrocarbons and energy resources. When he retired from the survey, he lived with his wife Nicole most of the time at Marche-en-Famenne, where he became the expert on local natural history and history. One of his subjects of interest was the history of the Citadel of Namur, build on a hill where he started studying geology at the beginning of his career.

His activity was not restricted to the Geological Survey. In 1973 he became Professor at the Catholic University of Leuven where he taught micropaleontology and paleobotany. He has been president of many scientific associations: the National Committee of Geological Sciences, the Geological Society of Belgium, etc. He was one of the founding members, and the first president, of the Professional Belgo-luxembourg Association of Geologists. He obtained many scientific awards, among which the Leopold von Buch Award (1989) from the Deutsche Geologische Gesellschaft and the Prix Baron van Erborn from the Royal Belgian Academy are most noteworthy.

Eric GROESSENS
ALGERIA

Mrs Fatima Abdesselam-Rouglih
Centre de Recherche et
Developpement
Ave du 1er Novembre
35000 Bounerdes
ALGERIE

ARGENTINA

Dr S. Archangelsky
URQUIZA 1132
Vicente Lopez
1638 Buenos Aires
Rep. ARGENTINA
Fax: 54-1-982-4494
E-mail: sarcang@overnet.com.ar

Dr Carlos Azcuy
Dep. de Ciencias Geológicas
Pabellón 2, Ciudad Universitaria
1428 Núñez, Buenos Aires
Rep. ARGENTINA
Fax: 54-1-638-1822
E-mail: azcuy@asapa.org.ar

Dr Silvina Césari
Div. Paleobotánica
Museo de Cs. Naturales
"B. Rivadavia"
Av. A. Gallardo 470
1405 Buenos Aires
Rep. ARGENTINA

Dr N. Rubin Cunzo
Paleontological Museum "E. Feruglio"
Av. 9 de Julio 655
9100 Trelew, Chubut
Rep. ARGENTINA

Dr Carlos R. Gonzalez
Instituto de Paleontología
Fundación Miguel Lillo
Miguel Lillo 251
4000 S.M. deTucumán
Rep. ARGENTINA
Fax: 081-330868
Email: tmjgeo@umail.uned.edu.ar

Mercedes di Pasquale
Facultad de Ciencias Exactas y
Naturales. Dpto. Geología. Ciudad
Universitaria. Pabellón II. Nuñez.
Capital Federal. C.P. 1428.
Rep. ARGENTINA

Dr Arturo C. Taboada
Instituto de Paleontología
Fundación Miguel Lillo
Miguel Lillo 251
4000 S.M. deTucumán
Rep. ARGENTINA

Dra M.S. Japas
Dep. de Ciencias Geológicas
Pabellón 2, Ciudad Universitaria
1428 Núñez, Buenos Aires
Rep. ARGENTINA

Dr Nora Sabattini
Universidad Nacional de la Plata
Facultad de Ciencias Naturales Y
Museo
Paseo del Bosque
1900, La Plata
Rep. ARGENTINA

AUSTRALIA

Prof. N.W. Archbold
School of Ecology and
Environment
Deakin University, Rusden
Campus
Clayton VIC 3168
AUSTRALIA
Fax: 03-9244-7480
E-mail: narchi@deakin.edu.au

Dr J.C. Clauzou-Long
Aust. Geol. Survey Organisation
P.O. Box 378
Canberra City, A.C.T. 2601
AUSTRALIA
Fax: 06-249-9983
E-mail: jclong@agso.gov.au

Dr J.M. Dickins
Aust. Geol. Survey Organisation
P.O. Box 378
Canberra City, A.C.T. 2601
AUSTRALIA
Fax: 06-249-9999

Dr B.A. Engel
Department of Geology
University of Newcastle
Callaghan NSW 2308
AUSTRALIA
Fax: +61-049-216-925
Email: bengel@geology.newcastle.edu.au

Dr T.B.H. Jenkins
89 Eton Road
Lindfield, NSW 2070
AUSTRALIA

Dr P.J. Jones
Department of Geology
Australian National University
Canberra ACT 0200
AUSTRALIA
Tel: 02-62493372
Fax: +61-2-62495544
Email: peter.jones@geology.anu.edu.au

Dr I. Metcalfe
Asia Centre
University of New England
Armidale, NSW 2351
AUSTRALIA
Fax: 02-6773-3596
Email: imetcalf@metz.une.edu.au

Prof. G. Playford
Department of Earth Sciences
The University of Queensland
Queensland 4072
AUSTRALIA

Fax: 07-365-1277
E-mail: geoff@so.eearthsciences.uq.edu.au

Prof. J. Roberts
School of Geology
The University of New South
Wales
Sydney, NSW 2052
AUSTRALIA
Fax: 61-2-9385-5935
E-mail: j.roberts@unsw.edu.au

Dr Guang R. Shi
School of A.S. & N.R.M.
Deakin University, Rusden
Campus
Clayton VIC 3168
AUSTRALIA
E-mail: grshi@deakin.edu.au

S. Stojanovic
71 Barracks Road
Hope Valley
Adelaide, SA 5090
AUSTRALIA
Fax: 373-4098

Dr G.A. Thomas
40 Waterdale Road
Ivanhoe, VIC 3079
AUSTRALIA

Dr S. Turner
Queensland Museum
P.O. Box 3300
South Brisbane, QLD 4101
AUSTRALIA
Fax: 61-7-3846-1918
E-mail: s.turner@mailbox.uq.oz.au

AUSTRIA

Dr F. Ebner
Institut für Geowissenschaften
Montanuniversität Leoben
A-8700 Leoben
AUSTRIA

Dr K. Krainer
Inst für Geol. und Paläontologie
Universität Innsbruck
Innrain 52
A-6020 Innsbruck
AUSTRIA
Fax: 0043-512-507-5585
E-mail: Karl.Krainer@uibk.ac.at

Prof. Dr H.P. Schönlaub
Geol. Bundesanstalt Wien
Postfach 127
Rasumofskygasse 23
A-1031 Wien
AUSTRIA
Fax: +43-1-712-5674-56
E-mail: hpschoenlaub@cc.geolba.ac.at
Dr Y.G. Tenchov
Geol.Inst. ul. Acad.
Bonchev bloc 24
Sofia 1113
BULGARIA
E-mail: geoins@bgearn.acad.bg

Dr Wayne Bamber
Geol.Surv.Canada, Calgary
3303-33rd St. N.W.
Calgary AB, T2L 2A7
CANADA
Fax: 403-292-6014
E-mail: bamber@gsccerf.sce.nrc.ca

Dr B. Beauchamp
3303-33rd St. N.W.
Calgary AB, T2L 2A7
CANADA
Fax: 403-292-6014
E-mail: utting@gsccerf.sce.nrc.ca

Dr A.R. Berger
Geological Survey of Canada
Room 177, 601 Booth Street
Ottawa ON, KIA 0E8
CANADA

Dr P.H. von Bitter
Royal Ontario Museum
100 Queen Park
Toronto ON, M5S 2C6
CANADA

Dr W.R. Danner
University of British Columbia
Dept Earth & Ocean.Sciences
6359 Stores Rd.
Vancouver B.C., V6T 1Z4
CANADA

Dr Martin Gibling
Department of Geology
Dalhousie University
Halifax N.S., B3H 3J5
CANADA

Prof. Charles Henderson
Department of Geology &
Geophysics
The University of Calgary
2500 University Drive, N.W.
Calgary, Alberta, T2N 1N4
E-mail: hender@geo.ucalgary.ca

Prof. Bernard L. Mamen
Laboratoire de Geologie
Universite de Bruxelles
50 avenue F.D. Roosevelt
Bruxelles B1000
BELGIUM

Dr W. Nassichuk
Geological Survey of Canada
3303-33rd St. N.W.
Calgary AB, T2L 2A7
CANADA

Dr M.J. Orchard
Geological Survey of Canada
101-685 Robson Street
Vancouver, B.C., V6B 5J3
CANADA
Fax: 604-666-1124

Dr Sylvie Pinard
7146 - 119 Street N.W.
Edmonton, Alberta T6G 1V6
CANADA
Fax: 403-436-7136

Dr B.C. Richards
Geological Survey of Canada
3303-33rd St. N.W.
Calgary AB, T2L 2A7
CANADA
Fax: 403-292-5377
E-mail: brichards@gsccerf.sce.nrc.ca

Dr I. Utting
3303-33rd St. N.W.
Calgary AB, T2L 2A7
CANADA
Fax: 403-292-6014
E-mail: utting@gsccerf.sce.nrc.ca

Dr Erwin L. Zodrow
Univ. College of Cape Breton
Dept Geology, Glace Bay H'way
Sydney N.S., B1P 6L2
CANADA
Fax: 902-562-0119

Dr Jiri Kalvoda
Dept. Geol. Paleont.
Kotlarská 2
61137 Brno
CZECH REPUBLIC
E-mail: dino@sci.muni.cz

Dr Jiri Král
Dept Genetics & Microbiology
Fac.Science, Charles University
Viniceňa 5
128 44 Praha 2
CZECH REPUBLIC

Dr Jiri Pesek
Dept. Geol. Paleontol., Fac.Science
Charles University
128 43 Praha 2, Albertov 6
CZECH REPUBLIC
Fax: +42-296-084 or +42-297-425

RNDr. Stanislav Oplustil
Charles University
Institute of Geology &
Paleontology
Albertov 6
CZ-128 43 Prague
CZECH REPUBLIC
Email: oplustil@prfdec.natur.cuni.cz

RNDr. Zbyněk Simunek
Czech Geological Survey
Klárov 3/131
CZ-118 21 Prague
CZECH REPUBLIC
Email: simunek@cgu.cz

Dr Mahmoud M. Kholieh
Egyptian Petroleum Research Inst
Nasr City, 7th Region
Cairo, EGYPT
Fax: 202-284-9997
FRANCE
Dr. J-F. Becq-Giraudon
BRGM-Christophe-Guesdon
74000 Orléans, France
FRANCE
Fax: 33-38-64-36-52
Dr. Robert Coquillet
Lab. Paléobotanique (SN5)
Univ. des Sciences et Techn. de Lille
F-59655 Villeneuve d'Ascq Cedex
FRANCE
Dr. G. Lachkar
Labor.Micropal., Univ.Paris VI
4 Place Jussieu
F-75252 Paris Cjdx 05
FRANCE
Dr. J.P. Laveine
Lab.Paléobot., UFR Sci.de la Terre
Univ. des Sci. et Techn. de Lille
F-59655 Villeneuve d'Ascq Cedex
FRANCE
Fax: 33-202-69-00
E-mail: Jean-Pierre.Laveine@univ-
lille1.fr
Dr. Marie Legrand-Blain
Institut de Géodynamique
Université Bordeaux 3
Av. Des Facultés
F-33405 Talence
FRANCE
Fax: 56-848-073
Dr. S. Loboziiak
U.S.T.L.
Sciences de la terre
F-59655 Villeneuve d'Ascq Cedex
FRANCE
Fax: (0) 33 20 43 6900
E-mail: Stanislas.Loboziiak@univ-
lille1.fr
Dr. M. Lys
36, rue de Buzenval
F-92210 Saint-Cloud
FRANCE
Dr. D. Mercier
Ecole des Mines de Paris
35, Rue Saint-Honoré
F-75705 Fontainebleau
FRANCE
Dr. G. S. Odin
Lab.Géochron.et Sedim.Ocenique
Univ. P. & M. Curie, 4 Place Jussieu
F-75252 Paris Cjdx 05
FRANCE
Fax: 33-1-4427-4965
Dr. M. F. Perret
Université Paul-Sabatier
Labo. Geol. Structurale
38 rue des 36 Ponts
F-31400 Toulouse
FRANCE
Fax: 61-55-82-50
E-mail: perret@ict.fr
Dr. P. Semenoff-Tian-Chansky
Institut de Paléontologie
8 Rue de Buffon
F-75007 Paris
FRANCE
Prof. Dr. D. Vachard
Univ. des Sciences et Techniques
Science de la Terre
F-59655 Villeneuve d'Ascq Cedex
FRANCE
Fax: 00-33-20-43-69-00
E-mail: Daniel.Vachard@univ-
lille1.fr
Dr. M. Weyant
Dept. Geologie
Université de Caen
Esplanade de la Paix
F-14032 Caen
FRANCE
GERMANY
Dr. H.W.J. van Amerom
Geol.Landesamt Nordrhein-Westfalen
De Greiff Str. 195
D-47803 Krefeld
GERMANY
Fax: 2151-977-505
Dr. Z. Belka
Inst. und Mus. für Geol. und Paläont.
Universität Tübingen
Sigmastraße 10
D-72076 Tübingen
GERMANY
Fax: 49-7071-610259
E-mail: belka@ub.uni-tuebingen.de
Prof. Dr. Carsten Brauckmann
Technische Universität Clausthal
Institut für Geologie und Paläontologie
Leibnizstrasse 10
D-38678 Clausthal-Zellerfeld
GERMANY
Fax: 0535-729035
E-mail: Carsten.Brauckmann@tu-
clausthal.de
Dr. Peter Bruckschen
Ruhr-Universität Bochum
Geologisches Institut
Universitätsstr. 150
D-44801 Bochum
GERMANY
Dr. Holger Forke
Institut für Paläontologie
Loewenichstrasse 28
D-91054 Erlangen
GERMANY
Fax: 9131-85 22690
E-Mail: samellas@ipa.uni-
erlangen.de
Prof. Dr. Hans-Georg Herbig
Universität zu Köln
Geologisches Institut
Zülpicher Str. 49a
D-50674 Köln
GERMANY
Fax: 49-221-470-5080
E-mail: herbig.paleont@uni-
koeln.de
Prof. Dr. Hans Kerp
Westfälische Wilhelms-
Universität
Mus.
Hindenburgplatz 57-59
D-48143 Münster
GERMANY
Fax: 49-228-238-831
E-mail: Kerp@uni-muenster.de
Dr. J. Kullmann
Inst. und Mus. für Geol. und Paläont.
Universität Tübingen
Sigmastraße 10
D-72076 Tübingen
GERMANY
Fax: (0) 747-2367688
E-mail: Juergen.Kullmann@uni-
tuebingen.de
Dr. Manfred Menning
Geoforschungs-Zentrum
Telegrafenberg A26
D-14473 Potsdam
GERMANY
Fax: (0) 331-228-1302
E-mail: Menning@gfz-potsdam.de
Dr. Klaus-Jürgen Müllerm
Institut für Paläontologie
Nussallee 8
D-53115 Bonn
GERMANY
Prof. Dr. E. Paproth
Schwanenburgerstr. 14
D-12780 Krefeld
GERMANY
Fax: 49-2151-710774
Dr. Elias Samankassou
Institute of Paleontology
University of Erlangen-Nuremberg
Loewenichstrasse 28
D-91054 Erlangen
GERMANY
Fax: 49-9131-85 22690
E-Mail: samellas@ipa.uni-
erlangen.de
Dr. D. Stoppel
Bundesanst.für Geowissen. u.
Rohstoffe
Postfach 51 0153
D-30631 Hannover
GERMANY
Fax: 511-643-2304
Dr. E. Thomas
Rhsbergstr. 22
D-58456 Witten-Herbede
GERMANY
Dr. Matthias Zeller
Geol.Landesamt
Nordrhein-Westfalen
De Greiff Str. 195
D-47803 Krefeld
GERMANY
Fax: 49-2151-897-505
Dr. W. Ziegler
Senckenbergisches Museum
Senckenberganlage 2
D-60325 Frankfurt 1
GERMANY
HUNGARY

Dr. sc. Heinz Kozur
Rézső u. 83
H-1029 Budapest
HUNGARY
Fax: +36-1-204-4167
E-mail: Email: h12547koz@ella.hu

IRELAND

Dr Geoff Clayton
Department of Geology
Trinity College
Dublin 2
IRELAND
Fax: 3531-6711199
E-mail: gclayton@tcd.ie

Dr Ken Higgins
Department of Geology
University College Cork
Cork
IRELAND
E-mail: gwstpfu@tcd.ie

ITALY

Prof. Mario Pasini
Universitaria delle Studi di Siena
Dipartimento di Scienze della Terra
I-53100 Siena
ITALY

JAPAN

Dr Shuko Adachi
Institute of Geosciences
University of Tsukuba
Tsukuba, Ibaraki 305-8571
JAPAN

Dr Masayuki Ehiro
Institute of Geology and Palaeontology
Tohoku University
Aoba, Aobaku
Sendai 980-8578
JAPAN
Fax: +81-22-263-9279

Dr Yoichi Ezaki
Dept Geosciences, Fac. Science
Osaka City University
Sumiyoshi-ku
Osaka 558-0022
JAPAN

Mr. T. Haikawa
Akiyoshidai Sci.Museum
Nat.Hist.
Shuho-cho, Mine-gun
Yamaguchi 754-0511
JAPAN

Dr Y. Hasagawa
Dept Earth Sciences, Fac.Science
Niigata University
Niigata 950-2181
JAPAN

Dr Hisaharu Igo
Dept Earth Sciences
Tokyo Gakugei University
Koganei, Tokyo 184-8501
JAPAN

Dr Hisayoshi Igo
Sakae-chou 1-31-7
Tachikawa City
Tokyo 190-0003
JAPAN

Dr K. Ishida
Dept. Material Science
Fac. Integrat. Arts & Science
Tokushima University
Tokushima 770-8502
JAPAN

Dr Kunihiro Ishizaki
Inst. Geology & Palaeontology
Faculty of Science
Tohoku University, Aobaku
Sendai
JAPAN 980

Mr Atsushi Kaneko
Fukae-honcho 1-15-7
Higashi-nada-ku
Kobe 658-0021
JAPAN

Dr K. Kamnera
Maimiotsaba 3-20-24
Higashi-ku
Fukuoka 813-0042
JAPAN

Dr Naruhiko Kashima
Department of Forest Resources
College of Agriculture
Ehime University
Matsuyama, Ehime 790-8566
JAPAN

Dr M. Kato
Miyamomori 1-jou 18-chome 1-15
Chuo-ku
Sapporo 064-0951
JAPAN
Fax: 81-11-644-1426

Dr T. Kawamura
Dept Earth Sci., Fac. Education
Miyagi Univ. Education, Aoba-ku
Sendai 980-0845
JAPAN
Fax: +81-22-211-5794
E-mail: t-kawaa@pc.miyakyo-u.ac.jp

Dr T. Kimura
Inst. Natural History
Takada 3-14-24
Toshima-ku
Tokyo 171-0033
JAPAN
Fax: 81-3-5992-9154

Dr T. Kolke
Dept Geology, Fac. Education
Yokohama National University
Hodogaya-ku
Yokohama 240-8501
JAPAN
Fax: 045-333-1536

Ms Yuko Kyuma
Tomachi 2-295-14-303
Nagasaki 850-0952
JAPAN

Dr Yoshihiro Mizuno
Department of Earth Sciences
Chiba University
Yayoi-cho, Inage-ku
Chiba 263-8522
JAPAN

Dr K. Mori
The Tohoku University Museum
Institute of Geology and Palaeontology
Tohoku University
Aoba-ku, Sendai 980-8578
JAPAN
Email: mori@iges.tohoku.ac.jp

Dr M. Musashino
Dept Earth Sciences
Kyoto Univ. Education
Hushimi-ku
Kyoto 612-0863
JAPAN

Dr K. Nagai
Department of Physics and Earth Sciences
Faculty of Science
University of the Ryukyus
Nishihara, Okinawa 903-0213
JAPAN
Email: k.nagai@sci-u-ryukyu.ac.jp

Dr Koji Nakamura
Inst. Geology, Fac.Gen.Education
Hokkaido University, Kita-ku
Sapporo, Hokkaido
JAPAN 060

Dr T. Nishida
Dept Earth Sci., Fac. Education
Saga University
Sagamihara 840-8502
JAPAN

Dr Yui Okimura
Ohtada 236-1, Kurose-machi
Kame-gun
Hiroshima 724-0611
JAPAN

Dr M. Ota
Kitakyushu Museum of Natural History
Nishihon-machi, Yahatahigashi-ku
Kitakyushu 805-0061
JAPAN
Fax: 093-661-7503
E-mail: ota@city.kitakyushu.jp

Page 52
Carboniferous Newsletter – Vol. 18 – 2000
Dr. I.S. Barskov
Moskovsk. Gosud. Univ.,
Leninskie Gory
11724 Moskva
RUSSIA

Dr. V.G. Canelin
Geological Institute
Russian Academy of Sciences
Pzyhevsy per. 7
109017 Moskva
RUSSIA

Dr. N. Goreva
Geological Institute
Russian Academy of Sciences
Pzyhevsy per. 7
109017 Moskva
RUSSIA
Fax: +7-095-231-04-43
Email: goreva@ginran.msk.su

Dr. T. N. Isakova
Geological Institute
Russian Academy of Sciences
Pzyhevsy per. 7
109017 Moskva
RUSSIA
Fax: +7-095-231-04-43
Email: goreva@ginran.msk.su

Dr. R.M. Ivanova
Institute of Geology &
Geochemistry
Urillian Branch, Russian Academy of
Sciences
Pochtoryi per. 7
620151 Ekaterinburg
RUSSIA
Fax: +7-3432-5152-55
Email: root@igg.e-burg.su

Dr. A.H. Kagarmanov
Leningradsky Gorny Inst.
Vasilievsky oestr.
21 Liniia, 2
199026 St Petersburg
RUSSIA

Dr. N.V. Kalashnikov
Urillian Branch, Russian Academy
of Science
ul. Pervomayskaya 57
167000 Syktyvkar
RUSSIA

Dr. L.I. Konenova
Moskovsk. Gosud. Univ.
Leninskie Gory
117234 Moskva
RUSSIA

Dr. M.V. Konovalova
Timan-Pechora Research Center
ul. Pushkina 2
169400 Ukhta
Komi Republic
RUSSIA
Fax: 6-13-04

Dr. O. Kossovaya
Secretary, Russian Comm. Carb.
Stratigraphy
V.S.E.G.E.I.
Srednyi pr. 74
199026 St Petersburg
RUSSIA
Fax: 7-212-213-57-35
Email: vsg@sovam.com

Dr. S.S. Lazarev
Paleontological Institute
Russian Academy of Sciences
Prosoyuznaya ul. 123
117321 Moskva
RUSSIA
Dr. K.V. Simakov
N. E. Inter. Res. Inst. Far East
Russian Academy of Sciences
Portovaya 16
685005 Magadan
RUSSIA
Dr. V. Tchizhova
V. N. I. Inst.
Dmitrovskiy proezd 10
125422 Moskva
RUSSIA
Dr. Vladimir T. Zorin
Research & Production Firm
AZens
Prospekt Marksia 62
660049 Krasnoyarsk
RUSSIA

SLOVENIA

Dr. A. Ramovs
Katedra za geologijo in paleontologijo
Aškerceva 2
SLO-1000 Ljubljana
SLOVENIA
Fax: 386-61-1259-337

SOUTH AFRICA

Dr Colin MacRae
Palaenot.Sect., Geological Survey
Private Mail Bag X112
Pretoria 0001
SOUTH AFRICA
Mr. Barry Millsteed
Palaenot.Sect., Geological Survey
Private Mail Bag X112
Pretoria 0001
SOUTH AFRICA
Fax: 012-841-1278
Email: bmillsted@geoscience.org.za

Dr. J. N. Theron
Geological Survey
P.O. Box 572
Bellville 7535
SOUTH AFRICA

SPAIN

Dr. A. García-Loygorri
Catedra de Geología
Escuela Sup. Ing. Minas
Ríos Rosas 21
28003 Madrid
SPAIN
L. F. Granados
Avda. Juan Andrade 10bis
28035 Madrid
SPAIN
Dr. M. L. Martinez Chacón
Dep. de Geología
Universidad de Oviedo
Arias de Velasco s/n
33005 Oviedo
SPAIN
Fax: 34-8-510-3103
Email: mmchacon@asturias.geol.uniovi.es

Dr. Sergio Rodríguez
Dep. de Paleontología
Facultad de Ciencias Geológicas
Ciudad Universitaria
28049 Madrid
SPAIN
Fax: 1-394-4854
Email: sergodri@eumak.sim.ucm.es

Dr. L. C. Sánchez de Posada
Dep. de Geología
Universidad de Vigo
Arias de Velasco s/n
33005 Oviedo
SPAIN
Fax: 34-8-510-3103
Email: lvposada@asturias.geol.uniovi.es

Dr. Eliza Villa
Dep. de Geología
Universidad de Oviedo
Arias de Velasco s/n
33005 Oviedo
SPAIN
Fax: 34-8-510-3103
Email: evilla@asturias.geol.uniovi.es

Dr. R. H. Wagner
Unidad de Paleobotánica
Jardín Botánico de Córdoba
Avenida de Linneo s/n
14004 Córdoba
SPAIN
Fax: 34-57-295-333
Email: jardimbotcad@servicom.es

TARTARSTAN

Dr. V. G. Gubareva
ul. Kosmonavtov 7 kv. 7
420061 Kazan
TARTARSTAN

THE NETHERLANDS

Bibliotheek Paleobotanik
Lab. Paleobotanik en Palynologie
Rijksuniversiteit, Heidelberglaan 2
NL-3584 CS Utrecht
THE NETHERLANDS
Fax: 31-30-253-096
Email: Z.Smeenk@beow.biol.ru.nl

Dr. M. J. M. Bless
Loosierstraat 3
NL-6271 BA Gulpen
THE NETHERLANDS

Dr. M. van den Boogaard
Naar natuurrhistorisch Museum
Postbus 917
NL-2300 RA Leiden
THE NETHERLANDS

Dr. A. C. van Ginkel
Naar Natuurhistorisch Museum
Postbus 917
NL-2300 RA Leiden
THE NETHERLANDS
Dr W. Bruce Saunders
Geology Department
Bryn Mawr College
Bryn Mawr, PA, 19010
U.S.A.

Serials Department
Univ. of Illinois Library
1408 West Gregory Drive
Urbana, IL 61801
U.S.A.

Dr Gerilyn S. Soreghan
Geology & Geophysics
University of Oklahoma
100 E. Boyd St.
Norman, OK, 73019
U.S.A.

Email: Isoreg@uoknor.edu

Dr C.H. Stevens
Dept Geology, School of Science
San Jose State University
San Jose, CA, 95192-0102
U.S.A.

Fax: 408-924-5053
Email: stevens@geo.sjsu.edu

Ms Mathilda Stucke
30 Oakland Avenue
West Hempstead
New York, 11552-1923
U.S.A.

Fax: 516-877-4711
Email: stucke@adlibw.adelphi.edu

Dr P.K. Sutherland
School of Geology & Geophysics
University of Oklahoma
Norman, OK, 73069
U.S.A.

Dr T.N. Taylor
Department of Botany, Haworth Hall
University of Kansas
Lawrence
Kansas 66045
U.S.A.

Email: ttaylor@falcon.cc.ukans.edu

Dr T.T. Thompson
Missouri Geological Survey
Box 250
Rolla, MO, 65401
U.S.A.

Dr Peter R. Vail
Dept Geol, Rice University
P.O. Box 1892
Houston, TX, 77251
U.S.A.

Dr G.P. Wahlman
BP Amoco
P.O. Box 3092
Houston, Texas 77253
U.S.A.

Fax: 1-281-366-7567
Email: wahlman@bp.com
Dr Bruce Wardlaw
U.S. Geological Survey
970 National Center
Reston, VA, 22092
U.S.A.

Dr J.A. Waters
Department of Geology
West Georgia College
Carrollton, Georgia 30118
U.S.A.

Fax: 770-836-4373
Email: jwaters@westga.edu

W. Lynn Watney
Senior Scientist
Kansas Geological Survey
1830 Constant Avenue - Campus West
Lawrence, KS 66047
U.S.A.

Fax: 785-864-5317
Email: lwatney@kgs.ukans.edu

Dr Keith Watts
P.O. Box
Wilson, Wyoming
U.S.A.

Dr Gary Webster
Department of Geology
Washington State University
Physical Science 1228
Pullman, WA, 99164
U.S.A.

Fax: 509-335-7816

Dr R.R. West
Dept Geol, Thompson Hall
Kansas State University
Manhattan, KS, 66506-3201
U.S.A.

Fax: 785-532-5159
Email: rwest@ksu.ksu.edu

Dr Garner L. Wilde
5 Auburn Court
Midland, Texas 79705
U.S.A.

David M. Work
Cincinnati Museum Center
Geier Collections and Research Center
1720 Gilbert Ave.
Cincinnati, OH 45202
U.S.A.

Fax: (513) 345-8501
Email dmwork@fuse.net

Dr N.I. Bojarina
Institute of Geology
Ukrainian Academy of Science
ul. Chkalova 55b
252054 Kiev
UKRAINA

Dr O.P. Fissunenko
Pedagog. Inst.
Oboronnaya 2
348011 Voroshilovgrad
UKRAINA

Dr R.I. Koziatskaya
Institute of Geology
Ukrainian Academy of Science
ul. Chkalova 55b
252054 Kiev
UKRAINA

Dr T.I. Nemirovska
Institute of Geology
Ukrainian Academy of Science
ul. Chkalova 55b
252054 Kiev
UKRAINA

Dr V.I. Poletaev
Institute of Geology
Ukrainian Academy of Science
ul. Chkalova 55b
252054 Kiev
UKRAINA

Dr Z.S. Rumyantseva
ul. Vasilovskaja 42, Kv.33
252022 Kiev
UKRAINA

Dr A.K. Shchegolev
Institute of Geology
Ukrainian Academy of Science
ul. Chkalova 55b
252054 Kiev
UKRAINA

Dr N.P. Vassiliuk
Donetskij Politekhni. Inst.
ul. Artema 58
Donetsk
UKRAINA

Mrs M.V. Vdovenko
Institute of Geology
Ukrainian Academy of Science
ul. Chkalova 55b
252054 Kiev
UKRAINA

UZBEKISTAN

Dr F.R. Bensh
Inst. Geol. & Geophys.
ul. Suleimanovoj 33
700017 Tashkent
UZBEKISTAN

Dr Iskander M. Nigmatjanov
ul. G. Lopatina 80, kv. 35
700003 Tashkent
UZBEKISTAN
CHAIRMAN:
Professor J. Roberts
School of Geology
The University of New South Wales
SYDNEY NSW 2052
AUSTRALIA.
PHONE: +61 2 9385 4279
FAX: +61 2 9385 5935
E-MAIL: J.Roberts@unsw.edu.au

VICE-CHAIRMAN:
Dr J.T. Dutro Jr
5173 Fulton St. NW
Washington DC 20016
U.S.A.
PHONE: +1-202-343-3222
FAX: +1-202-343-8620

SECRETARY/EDITOR:
Assoc. Prof. Ian Metcalfe
Asia Centre
University of New England
ARMIDALE NSW 2351
AUSTRALIA.
PHONE: +61-67-733280
FAX: +61-67-733596
E-MAIL: sccs@une.edu.au

OTHER TITULAR MEMBERS:
Dr Alexander S. Alekseev
Dept. of Palaeontology, Geol. Faculty
Moscow State University
119899 Moscow GSP V-234
RUSSIA
FAX: 7095391266
E-MAIL: aaleks@geol.msu.ru

Dr Paul Brenchley
1 Whistler Point Road,
Westport, MA 02790
U.S.A.
PHONE: +1 713 366 7416 (c/o John Groves)
E-MAIL: saltwaterfarm@compuserve.com

Dr Boris Chuvashov
Inst. Geology/Geochemistry
Russian Academy of Sciences
Pochortyi per. 7
620219 Ekaterinburg
RUSSIA
FAX: 7 3432 515252
E-MAIL: root@igg.e-burg.su

Dr Geoff Clayton
Department of Geology
Trinity College
Dublin 2
IRELAND
FAX: +353 1 671 1199
E-MAIL: gclayton@tcd.ie

Dr Marina V. Durante
Geological Institute
Russian Academy of Sciences
Petrovsky per. 7
109017 Moskov
RUSSIA
FAX: +7 95 231 0443
E-MAIL: durante@ginran.msk.su

Dr B.A. Engel
Department of Geology
University of Newcastle
NEWCASTLE NSW 2308
AUSTRALIA
PHONE: +61-49-215402
FAX: +61-49-216925
E-MAIL: bengel@geology.newcastle.edu.au

Dr Carlos R. González
Instituto de Paleontología
Fundación Miguel Lillo
Miguel Lillo 251
4000 S.M.de Tucuman
ARGENTINA
FAX: +54 8 313 8068
E-MAIL: fnmgeos@umnail.unnt.edu.ar

Dr Philip H. Heckel
Department of Geology
University of Iowa
Iowa City, Iowa 52242
U.S.A.
FAX: +1 319 335 1821
E-MAIL: philip-heckel@uiowa.edu

Dr H. Richard Lane
National Science Foundation
4201 Wilson Blvd., Room 785
Arlington, Virginia 22230 USA
FAX: 1-713-3667416
Email: hlane@nsf.gov

Dr J.P. Laveine
Lab.PalJebat,.UFR Sci de la Terre
Univ. Sci. Techn. de Lille
F-59655 Villeneuve d'Ascq Cédex
FRANCE
FAX: +33 2043 6900
E-MAIL: Jean-Pierre.Laveine@univ-lille1.fr

Prof. Bernard L. Mamer
Laboratoire de Geologie
Universite de Bruxelles
50 avenue F.D. Roosevelt
Bruxelles 8100
BELGIUM
FAX: +32 26502226

Dr Ouyang Shu
Nanjing Inst. of Geol. & Palaeont.
Academia Sinica, Chi-Ming-Su
Nanjing 210008
PEOPLES REPUBLIC OF CHINA
FAX: +86 (2) 335 7026
E-MAIL: bxx@njnet.nj.ac.cn

Dr N.J. Riley
British Geological Survey
Keyworth
Nottingham NG12 5GG
UNITED KINGDOM
Fax: +44-115-9363200
E-MAIL: N.Riley@bgs.ac.uk

Prof. G.D. Sevastopulo
Department of Geology
Trinity College
Dublin 2
IRELAND
FAX: +353-1-671 2821 (until mid-July, 1997)
E-MAIL: gsvtpul@tcd.ie

Dr Elisa Villa
Depo de Geología
Universidad de Oviedo
Arias de Velasco s/n
33005 Oviedo
SPAIN
FAX: +34 8 510 3103
E-MAIL: evilla@asturias.geol.uniovi.es

Dr R.H. Wagner
Unidad de Palaeobotánica
Jardín Botánico de Córdoba
Avenida de Linneo s/n
14004 Córdoba
SPAIN
FAX: +34 57 295 333
Email: cr1wagro@uco.es

Dr C.F. Winkler Prins
Nationale Natuurhistorisch Museum
Postbus 9517
NL-2300 RA Leiden
THE NETHERLANDS
FAX: +31 715 135 344
E-MAIL: wp.pal@nnm.nl